International Journal on Advances in Software, vol 8 no 1 & 2, year 2015, http.//www.iariajournals.org/software/

27

A Study on Transport and Load in a Grid-based Manufacturing System

Leo van Moergestel, Erik Puik, Daniél Telgen

Department of Computer science

HU Utrecht University of Applied Sciences

Utrecht, the Netherlands

Email: {leo.vanmoergestel, erik.puik, daniel.telgen} @hu.nl

Abstract—Standard mass-production is a well-known manufac-
turing concept. To make small quantities or even single items of
a product according to user specifications at an affordable price,
alternative agile production paradigms should be investigated and
developed. The system presented in this article is based on a
grid of cheap reconfigurable production units, called equiplets.
A grid of these equiplets is capable to produce a variety
of different products in parallel at an affordable price. The
underlying agent-based software for this system is responsible
for the agile manufacturing. An important aspect of this type
of manufacturing is the transport of the products along the
available equiplets. This transport of the products from equiplet
to equiplet is quite different from standard production. Every
product can have its own unique path along the equiplets. In this
article several topologies are discussed and investigated. Also, the
planning and scheduling in relation to the transport constraints is
subject of this study. Some possibilities of realization are discussed
and simulations are used to generate results with the focus on
efficiency and usability for different topologies and layouts of
the grid and its internal transport system. Closely related with
this problem is the scheduling of the production in the grid. A
discussion about the maximum achievable load on the production
grid and its relation with the transport system is also included.

Keywords-Multiagent-based manufacturing; Flexible transport.

I. INTRODUCTION

In standard batch processing the movement of products is
mostly based on a pipeline. Though batch processing is a very
good solution for high volume production, it is not apt for
agile manufacturing when different products at small quantities
are to be produced by the production equipment. This article
describes an agile and flexible production system, where the
production machines are placed in a grid. Products are not
following a single path, but different paths can be used in
parallel, leading to parallel manufacturing of different prod-
ucts. The grid arrangement of production machines reduces
the average path when products move along their own possibly
unique paths within the grid during the production. To move
the products around during production, the ways the production
machines are interconnected should be investigated to find an
affordable and good solution. An important aspect will also be
the amount of products in the grid during production, because
too many products will result in failures in the scheduling
of the production. The investigation about transport and the
amount of products in the grid, resulting in the total load of

John-Jules Meyer
Intelligent systems group
Utrecht University
Utrecht, the Netherlands
Email: J.J.C.Meyer@uu.nl

the grid, are the motivation and purpose of this article. The
goal is to investigate the effect of different interconnection
possibilities to the average production path and to see how
the grid behaves under load. The work in this article is based
on a paper presented at the Intelli 2014 conference [1] and
other previous work. The design and implementation of the
production platforms and the idea to build a production grid
can be found in Puik [2]. In Moergestel [3] the idea of using
agent technology as a software infrastructure is presented.
Two types of agents play a major role in the production: a
product agent, responsible for production of a product and an
agent responsible for performing certain production steps on a
production machine. Another publication by Moergestel [4] is
dedicated to the production scheduling for the grid production
system. The rest of this paper is organised as follows: In
Section II of this article related work will be discussed.
Section III will explain grid manufacturing in more detail,
followed by Section IV about transport in the grid. Section V
introduces the software tools built. The results are presented
and discussed in Section VI. Finally, a conclusion where the
results are summarized will end the article.

II. RELATED WORK

Using agent technology in industrial production is not
new though still not widely accepted. Important work in
this field has already been done. Paolucci and Sacile [5]
give an extensive overview of what has been done in this
field. Their work focuses on simulation as well as production
scheduling and control [6]. The main purpose to use agents
in [5] is agile production and making complex production
tasks possible by using a multi-agent system. Agents are also
introduced to deliver a flexible and scalable alternative for
manufacturing execution systems (MES) for small production
companies. The roles of the agents in this overview are quite
diverse. In simulations agents play the role of active entities
in the production. In production scheduling and control agents
support or replace human operators. Agent technology is used
in parts or subsystems of the manufacturing process. On the
contrary, we based the manufacturing process as a whole on
agent technology. In our case a co-design of hardware and
software was the basis.

Bussmann and Jennings [7][8] used an approach that com-
pares to our approach. The system they describe introduced
three types of agents, a workpiece agent, a machine agent and

2015, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



a switch agent. Some characteristics of their solution are:

e The production system is a production line that is
built for a certain product. This design is based
on redundant production machinery and focuses on
production availability and a minimum of downtime
in the production process. Our system is a grid and is
capable to produce many different products in parallel;

e The roles of the agents in this approach are different
from our approach. The workpiece agent sends an
invitation to bid for its current task to all machine
agents. The machine agents issue bids to the work-
piece agent. The workpiece agent chooses the best
bid or tries again. In our system, the negotiating is
between the product agents, thus not disrupting the
machine agents;

e They use a special infrastructure for the logistic sub-
system, controlled by so called switch agents. Even
though the practical implementation is akin to their
solution, in our solution the service offered by the
logistic subsystems can be considered as production
steps offered by an equiplet and should be based on a
more flexible transport mechanism.

However, there are important differences to our approach.
The solution presented by Bussmann and Jenning has the
characteristics of a production pipeline and is very useful as
such, however, it is not meant to be an agile multi-parallel
production system as presented here.

Other authors focus on using agent technology as a solution
to a specific problem in a production environment. In [9]
a multi-agent monitoring system is presented. This work
focusses on monitoring a manufacturing plant. The approach
we use monitors the production of every single product. The
work of Xiang and Lee [10] presents a multiagent-based
scheduling solution using swarm intelligence. Their work uses
negotiating between job-agents and machine-agents for equal
distribution of tasks among machines. The implementation and
a simulation of the performance is discussed. In our approach
the negotiating is between product agents and load balancing is
possible by encouraging product agents to use equiplets with a
low load. We did not focus on a specific part of the production
but we developed a complete production paradigm based on
agent technology in combination with a production grid. This
model is based on two types of agents and focuses on agile
multiparallel production. There is a much stronger role of the
product agent and a product log is produced per product. This
product agent can also play an important role in the life-cycle
of the product [11].

In agent-based manufacturing the term holon is often used.
While agent technology emerged from the field of computer
science, the concept holon has its origin in computer integrated
manufacturing (CIM) [12]. The concept was proposed by
Koestler [13]. Parts of a system can be autonomous and stable
on their own, but by cooperation they may form a bigger
whole. This bigger whole could again be a part of an even
bigger whole. A holon is both a part and a whole. A holon
can represent a physical object or a logical activity. In the
domain of manufacturing this can be a production machine, a
production order or a human operator [14]. Agent technology

International Journal on Advances in Software, vol 8 no 1 & 2, year 2015, http.//www.iariajournals.org/software/

28

can be used to implement a holon. This is where the two
approaches, agent technology and the holon concept, meet.
An important difference is that a holon can also be a passive
entity like the aforementioned production order, while agents
represent active autonomous entities. Fisher [15] uses a holonic
approach for manufacturing planning and control. His work is
based on the use of the Integration of Reactive behaviour and
Rational Planning (InterRRap) agent architecture proposed by
Miiller [16]. Agents represent the holonic manufacturing com-
ponents, forming a multiagent system. In our manufacturing
model the holonic approach was not used, because a more
simple multiagent system fitted our requirements.

III. GRID MANUFACTURING

In grid production, manufacturing machines are placed in
a grid topology. Every manufacturing machine offers one or
more production steps and by combining a certain set of
production steps, a product can be made. This means that when
a product requires a given set of production steps and the grid
has these steps available, the product can be made [2]. The
definition of a production step as used in this article is:

Definition[Production step] A production step is an action or
group of coordinated or coherent actions on a product, to bring
the product a step further to its final realisation. The state of
the product before and after the step are stable, meaning that
the time it takes to do the next step is irrelevant and that the
product can be transported or temporarily stored between two
steps.

The software infrastructure that has been used in our grid
is agent-based. Agent technology opens the possibilities to let
this grid operate and manufacture different kinds of products
in parallel, provided that the required production steps are
available [3]. The manufacturing machines that have been
built in our research group are cheap and versatile. These
machines are called equiplets and consist of a standardized
frame and subsystem on which several different front-ends can
be attached. The type of front-end specifies what production
steps a certain equiplet can provide. This way every equiplet
acts as a reconfigurable manufacturing system (RMS) [17]. An
example of an equiplet front-end is a delta-robot. With this
front-end, the equiplet is capable of pick and place actions.
A computer vision system is part of the frontend. This way
the equiplet can localise parts and check the final position
they are put in. A picture of an equiplet with a delta-robot
front-end is shown in Figure 1. For a product to be made a
sequence of production steps has to be done. More complex
products need a tree of sequences, where every sequence ends
in a half-product or part, needed for the end product. The
actual production starts at the branches of the tree and ends
at the root. The equiplet is represented in software by a so-
called equiplet agent. This agent advertises its capabilities
as production steps on a blackboard that is available in a
multiagent system where also the so-called product agents
live. A product agent is responsible for the manufacturing of
a single product and knows what to do, the equiplet agents
knows how to do it. A product agent selects a set of equiplets
based on the production steps it needs and tries to match these
steps with the steps advertised by the equiplets. The planning
and scheduling of a product is an atomic action, done by the
product agent in cooperation with the equiplet agent and takes

2015, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



Figure 1: An equiplet with a delta-robot frontend.

seven stages [4]. First, Let us assume that a single sequence
of steps is needed:

1) From the list of production steps, build a set of
equiplets offering these steps;

2)  Ask equiplets about the feasibility and duration of the
steps;

3) Indicate situations where consecutive steps on the
same equiplet are possible;

4)  Generate at most four paths along equiplets;

5) Calculate the paths along these equiplets;

6)  Schedule the shortest product path using first-fit (take
the first opportunity in time for a production step) and
a scheduling scheme known as earliest deadline first
(EDF) [4];

7)  If the schedule fails, try the next shortest path.

For more complex products, consisting of a tree of sequences,
the product agent spawns child agents, which are each re-
sponsible for a sequence. The parent agent is in control of
its children and acts as a supervisor. It is also responsible for
the last single sequence of the product. In Figure 2, the first
two halfproducts are made using step sequences < 01,092 >
and < 03,04 >. These sequences are taken care of by child
agents, while the parent agent will complete the product by
performing the step sequence < 04, 07,02,071 >.

OO
ROt

Figure 2: Manufacturing of a product consisting of two half-products.

Every product agent is responsible for only one product to
be made. The requests for products arrive at random. In
the implementation we have made, a webinterface helps the
end-user to design or specify his or her specific product.
At the moment, all features are selected a product agent
will be created. During manufacturing a product is guided
by the product agent from equiplet to equiplet. In Figure 3,

International Journal on Advances in Software, vol 8 no 1 & 2, year 2015, http://www.iariajournals.org/software/

29

production steps product X
equiplet A ( X1

equiplet B

production steps product Z

production steps product Y,

equiplet C

equiplet D e

equipletE  Time >

Figure 3: Three products in production.

the situation is shown for three products X,Y and Z using
five different equiplets (A4, B, C, D, F). Production step i of
product X is denoted by Xi. From Figure 3 the following
properties become clear:

e  Production steps can differ in length as opposed to
batch processing, where every step in the production
line should normally take the same amount of time;

e  Production can start at random;
e It will be unlikely that all equiplets are used at 100%;

e A failing production step on a product will not block
the whole manufacturing process of other products as
in a production pipeline used in mass production;

e Products have their own unique paths along the
equiplets.

The path the product has to follow during manufacturing will
in general be a random walk along the equiplets. Figure 4 gives
an impression of such a random walk.

Manufacturing Grid

Figure 4: Random walk of a product in the grid.

This random walk is more efficient when the equiplets are in
a grid arrangement against a line arrangement as used in batch
processing. Some calculations on the average number of hops
has been done for a random path between nodes on a line,
on a circle and in a grid. In Figure 5, the number of hops is
plotted against /N, where N is the number of nodes among
the line, the circle or in the grid. The increase of the average
path length (number of hops) is the highest for nodes put on
a line. So a random walk along a line is behaving bad, when
the number of nodes increases.

Figure 6 shows the global system architecture. The mul-
tiagent system is a distributed system consisting of com-
puters belonging to the equiplet hardware where the equilet
agents (EqA) live and some general computer platforms. The
general computer platforms contain the product agents (PA)
and blackboards that are used for sharing information that

2015, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



Average number of hops

SQRT(N)

Figure 5: Number of hops for different configurations of N nodes.

MultiAgent System

@@@@gﬂ
JUUU

Figure 6: Global architecture of the software infrastructure.

should be available for all agents. The platforms are connected
using standard Ethernet. New request for products to be built
are received from the internet. Such a request will spawn
a new product agent, that will plan its production path and
schedule its production using the information available on the
blackboards as described earlier in this section.

IV. TRANSPORT IN THE GRID

In the production grid, there is at least the stream of prod-
ucts to be made. Another stream might be the stream of raw
material, components or half-products used as components.
We will refer to this stream as the stream of components.
These components could be stored inside the equiplets, but
in that case there is still a stream of supply needed in case the
locally stored components run short. This increases the logistic
complexity of the grid model. In the next subsections, models
will be introduced that alleviate the complexity by combining
the stream of products with the stream of components.

A. Building box model

In the building box model, a tray is loaded with all the
components to create the product. To maintain agility, this
set of components can be different for every single product.
Before entering the grid, the tray is filled by passing through a
pipeline with devices providing the components. In this phase
a building box is created that will be used by the grid to
assemble the product. The equiplets in the grid are only used
for assembling purposes. Figure 7 shows the setup.

International Journal on Advances in Software, vol 8 no 1 & 2, year 2015, http.//www.iariajournals.org/software/

30

Manufacturing Grid

Part-supply Line

O-OO0O00~

Figure 7: Production system with supply pipeline.

A problem with the previous setup is the fact that more
complex products should be built by combining subparts that
should be constructed first. In the previously presented setup
all parts needed for the construction of the subparts should
be collected in the building box, making the assembling
process more complicated. Another disadvantage of putting
all components for all subparts together in a building box is
that this slows down the production time, because normally
subparts can be made in parallel. A solution is shown in the
setup of Figure 8. Subparts can be made in parallel and are
input to the supply-line that eventually could be combined with
the original supply-line.

Manufacturing Grid

Part-supply Line

O-O-O0-00O~

—_—

_—
Half-product Supply Line

Figure 8: Production system with loops.

The next refinement of the system is presented in Figure 9.
Here a set of special testnodes has been added to the system.
These nodes are actually also equiplets, but these equiplets
have a front-end that makes them suited for testing and
inspecting final products as well as subparts that should be
used for more complicated products.

Manufacturing Grid Test Nodes

Part-supply Line

OO0-0O00O0~ reect

- @0 @ > —>|
accept

—_——> + exit
Half-product Supply Line

accept
upply

Figure 9: Production system with tests and loops.

A test can also result in a reject and this will also inform the
product agent about the failure. If the product agent is a child

2015, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



@ switch A

| BeltR [ |
~ BeltL {3 |

C—— switch B

Figure 10: Bidirectional conveyor belt with switches.

agent constructing a subpart, it should consult the parent agent
if a retry should be done. In case it is the product agent for
the final product, it should ask its maker what to do.

B. Conveyor belt-based systems

A conveyor belt is a common device to transport material.
Several types are in use in the industry. Without going into
detail, some kind of classification will be presented here:

e  belts for continuous transport in one direction;

e  belts with stepwise transport from station to station.
These types of belts can be used in batch environ-
ments, where every step takes the same amount of time
and the object should be at rest when a production step
is executed;

e  belts with transport is two directions. This can also be
realised by using two one direction belts, working in
opposite direction.

In Bussmann [7], an agent-based production system is built us-
ing transport belts in two directions where a switch mechanism
can move a product from one belt to another. A special switch-
agent is controlling the switches and thus controlling the flow
of a product along the production machines. In Figure 10
this solution is shown. Switch A is activated and will shift
products from belt R to the belt L that will move it to the left.
This concept fits well in the system developed by Bussmann,
because that system is actually a batch-oriented system. In a
grid the use of conveyor belts might be considered, but for agile
transport several problems arise, giving rise to complicated
solutions:

e should the direction in the grid consist of one-way
paths or should be chosen for bidirectional transport?

e a product should be removed from the moving belt
during the execution of a production step. A stepwise
transport is inadequate, because of the fact that pro-
duction steps can have different execution times in
our agile model. This removal could be done by a
switch mechanism as used by Bussmann, but every
equiplet should also have it own switch-unit to move
the product back to the belt.

e because the grid does not have a line structure for
reasons explained in the first part of this paper, a lot
of crossings should be implemented. These crossings
can also be realised with conveyor belt techniques, but
it will make the transport system as a whole expensive
and perhaps more error-prone.

International Journal on Advances in Software, vol 8 no 1 & 2, year 2015, http.//www.iariajournals.org/software/

31
C. Transport by automatic guided vehicles

An alternative for conveyor belts is the use of automatic
guided vehicles (AGV). An AGV is a mobile robot that follows
certain given routes on the floor or uses vision, ultrasonic
sonar or lasers to navigate. These AGVs are already used in
industry mostly for transport, but they are also used as moving
assembly platforms. This last application is just what is needed
in the agile manufacturing grid. The AGV solution used to be
expensive compared to conveyor belts but some remarks should
be made about that:

e The AGVs offer a very flexible way for transport that
fits better in non-pipeline situations;

e Low cost AGV platforms are now available;

e From the product agent view, an AGV is like an
equiplet, offering the possibility to move from A to
B.

e A conveyor-belt solution that fits the requirements
needed in grid productions will turn out to be a com-
plicated and expensive system due to the requirements
for flexible transport.

In the grid, a set of these AGVs will transport the product
between equiplets and will be directed to the next destination
by product agents.

1) AGV system components: An AGV itself is a driverless
mobile robot platform or vehicle. This AGV is mostly a
battery-powered system. To use an AGYV, a travel path should
be available. When more than one AGV is used on the travel
path, a control system should manage the traffic and prevent
collisions between the AGVs or prevent deadlock situations.
The control system can be centralised or decentralised.

2) AGV navigation: There are plenty ways in which nav-
igation of AGVs has been implemented. The first division in
techniques can be made, based on whether the travel path itself
is specially prepared to be used by AGVs. This can be done

by:

e putting wires in the path the AGV can sense and
follow;

e  using magnetic tape along the path to guide the AGV;

e using coloured paths, by using adhesive tape on the
path to direct the AGV;

e using transponders, so the AGV can localise itself.

The second type of AGV does not require a specially prepared
path. In that case navigation is done by using:

e laser range-finders
e ultrasonic distance sensors

e  vision systems

Though it might look as if the decision for using AGVs has
already been made, further research should be done to see what
the efficiency will be for several implementations. This will be
the subject of the next two sections.

2015, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



V. SOFTWARE TOOLS

Two simulation software packages have been built. A
simulation of the scheduling for production and a simulation
for the path planning. The path planning tool will be used to
calculate the efficiency for different transport interconnections.
The scheduling tool will be used to calculate the number
of active product agents within the grid. This number is
important, because it will tell how many products should be
temporally stored, waiting for the next production step to be
executed.

A. Path planning simulation software

A path planning tool has been built, to calculate a path a
certain product has to follow along the equiplets. The Dijkstra
path algorithm has been used [18]. The tool can work on
different grid transport patterns. This tool will be used to study
several possible grid topologies. A screen-shot of the graphical
user interface of the tool is shown in Figure 11. Several differ-
ent topologies and interconnections can be chosen by clicking
the appropriate fields in the GUI. The average transport path
for all nodes is one of the results of this simulation.

Structure Setup | Product Setup | Si ion and Results | (Und: & still in progress) Check Data |

© New 7 Edit @ Remove [ ‘Demoi:}x}) ‘v‘ =,
GridName:| |
szexaxs:| 3
sizeyaxis: [ 3]

Build Structure

Custom grid structure format

Input string: |1-2,0-3,0-3,1-2 Build Custom Structure

LU R [Cwane
(@ = @)= @] oo
‘ I H \ H H \ H I | Save Structure

Figure 11: Path planning GUIL

B. Scheduling simulation software

The software for the scheduling simulations consists of two
parts. One part is a command-line tool that is driven by a
production scenario of a collection of product agents, each
having their own release time, deadline and set of production
steps. This production scenario is a human readable XML-file.
The second part is a GUI for visualisation of the scheduling
system. In Figure 12, a screen shot of this visualisation tool
is shown.

- N
- I
- o] |

& e ] Ermrema

- pEem ] EEEl

B (=] EEm] ]

Figure 12: GUI of the scheduling simulator.

International Journal on Advances in Software, vol 8 no 1 & 2, year 2015, http.//www.iariajournals.org/software/

32

Figure 13: Standard fully connected grid.

Figure 14: Grid with bidirectional lanes and bidirectional backbone lanes.

VI. RESULTS

This section shows two types of results. First, the transport
possibilities are investigated using the path planning tool. Next,
the results of the scheduling simulations are discussed.

A. Transport possibilities

To calculate the average pathlength in the grid for different
paths, several structures have been investigated. Some of these
structures were chosen to fit conveyor belt solutions of some
type. All structures will also fit within the AGV-based solution.

1) A fully connected grid. where all paths are bidirec-
tional paths as in Figure 13.

2) A grid where all paths are bidirectional, but this
design has removed the crossings as in Figure 14.
This structure could be implemented by conveyor
belts in combination with switches;

3) A structure with five unidirectional paths and two
bidirectional paths as in Figure 15. This structure is
also a possible implementation with conveyor belts;

4) A structure with bidirectional paths combined in a
single backbone as in Figure 16;

5) A structure with five bidirectional paths and two
unidirectional paths as in Figure 17;

6) A fully connected grid, but now with half of the paths
unidirectional as in Figure 18.

For all these structures the average path is the result from a
simulation of 1000 product agents, all having a random walk
within the grid. Each product agent has an also random set
of equiplets it has to visit ranging from 2 to 50 equiplets per
product agent. Every path or hop between adjacent nodes is
considered to be one unit length. If the paths have no crossings,
a conveyor belt might be used, because crossing belts will

2015, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



1]

Figure 15: Grid with unidirectional lanes and bidirectional backbone lanes.

1

Figure 16: E-shaped connection, with bidirectional lanes.

Hi

Figure 17: Bidirectional lanes with unidirectional backbones.

EEEE

Figure 18: Fully connected grid with unidirectional lanes.

result in a more complex system. All structures can also be
implemented with AGVs. For some structures the average path
can also easily be calculated and the results of these exact
calculations are comparable with the simulation results.

The results of the simulation are given in a table and
also plotted as a histogram in Figure 19. In Table I, a
second outcome from the simulation is also shown. This is
the percentage of agents that could find an alternative path of

International Journal on Advances in Software, vol 8 no 1 & 2, year 2015, http://www.iariajournals.org/software/

33

TABLE I: Results of the simulation.

Structure 1 2 3 4 5 6
Average path 3.2 3.9 64 | 51 | 60 | 3.6
% Alternatives 60 16.7 8.4 0 0 27

Average path

0 1 2 3 4 5 6 7
Structure

Figure 19: Simulation results for different structures.

the same length. This result is of interest when in a traffic
control implementation, alternative paths become important.

As could be expected, the best result is achieved in the fully
connected grid with bidirectional paths. Changing the grid to
an almost identical structure of Figure 18 with unidirectional
paths, results in only a small penalty. This structure could also
be useful in an AGV-based transport system, reducing collision
problems because of the one-way paths used. Both structures
also offer a relative high percentage of alternative paths, that
could also be useful in an AGV-based system. The structures
that fit a conveyor belt solution show a path length that is
considerably higher.

When AGVs are used, the architecture of the production
system slightly changes. The solution fits well in the software
infrastructure. For the product agent, the AGV can be seen
as just another equiplet, but instead of providing production
steps, transport in the grid is offered. Another difference is
that the product agent will be tied to an AGV during the whole
production. The resulting architecture is shown in Figure 20.
The AVGs are represented by transport agents (TA). During
the execution of a production step, the equiplet agent can also
cooperate with the transport agent to put the product on the
AGV in the right position. This might come handy when a
product is too large for the equiplet to handle by itself.

B. Scheduling

The next results were generated using the scheduling tool.
This tool was used in earlier research [4] to discover the
scheduling approach to be used. The scheduling is based on
timeslots, having a certain duration. Such a timeslot is the min-
imal allocatable unit of time. The methods used for scheduling
were derived from real time scheduling schemes adapted to
the multiagent environment. To explain these schemes, some
symbols used in expressions should be defined:

2015, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



MultiAgent System

JUUU

Figure 20: Global architecture with transport.

P is the product set. A single product is denoted as P;.
r; is the first timeslot after release of product P;

d; is the timeslot for the deadline of product P;

T is the current timeslot

s;(7) is the number of timeslots of product P; that is left to
be done.

Five well-known scheduling schemes are as follows.

1)  Fixed priority, FP. Every task is assigned a priority
depending on the task type. The highest priority tasks
are completed before the lower priorities are run.

2)  Earliest deadline first, EDF. The task with the first
deadline to come gets the highest priority and is
handled first.

3) Least slack first, LSF. The task with the minimum
slack gets the highest priority and is handled first.
Slack is defined as the total time available until the
deadline minus the time to complete the task. The
slack for product P; at timeslot 7 can be written as
(di — 1) — si(7).

4)  Smallest critical ratio first, CR. The critical ratio is
defined as the total number of timeslots available
divided by the number needed. For a product P; at
timeslot 7: (d; — 7)/s;(7). If this number turns out
to be 1, all timeslots should be used. If it is lower
than 1, the scheduling is infeasible. A high number
shows that many slots are available for a relative
small number of needed timeslots.

5)  Shortest process first, SPF. The task with the shortest
time to complete gets the highest priority.

All these types can be used in conjunction with what is called
preemption. By this is meant that when a higher priority task
arrives, another already running task is paused (preempted)
to make way for the higher priority task. After completion
of the higher priority task, the preempted task is resumed.
Because all agents are equal, fixed priority is inadequate as a
scheduling scheme for the production grid. Both EDF and LSF
are considered optimal in the sense of feasibility: this means
that if there exists a feasible schedule, EDF or LSF will find
it [19]. However, this is only true for the situation where a
single resource is scheduled among requesters, as is the case
in a single processor computer system, where the processor
time is scheduled among different tasks.

International Journal on Advances in Software, vol 8 no 1 & 2, year 2015, http.//www.iariajournals.org/software/

34

The adjustments that has been made to adapt the scheduling
schemes to the situation of the production grid had to do with
preemption and the way a feasible scheduling and a failing
scheduling are treated. For scheduling in the grid the following
list of objectives has been worked out:

1) It should offer a best effort to schedule products that
will arrive at random times.

2) It should schedule products at high grid loads.

3) It should be fast and reliable. The scheduling should
take a small amount of time.

4) It should introduce only a small intercommunication
overhead. This will mean that the amount of inter-
agent messages should be kept low.

5) It should be fair. When a product is scheduled for
production with a feasible scheduling, meaning the
product will be completed before the deadline, the
scheduling system should be designed such that it
will guarantee that the feasible scheduling will not
be changed to an infeasible scheduling at a later time
by the scheduling system.

In [4], two approaches for preemption are introduced. To
describe the differences EDF will be used as an example. If a
product arrives at time ¢ with deadline Ty, two scenarios are
possible:

1)  All products with a later deadline will temporarily
give up their schedules starting from ¢ to make way
for the newly arrived product. This product will
be scheduled and the products that gave up their
scheduling try to reschedule within the constraints
for their deadlines according to the EDF scheme.
However, if one of these reschedules fails, objective
5 of the scheduling system is not achieved. This will
result in reporting a scheduling failure for the newly
arrived product and a restore of the schedules of the
already active products. This approach is called the
strong approach.

2)  The newly arrived product will first try to schedule
its production without disturbing the other products.
Only if it fails it will follow the schedule and resched-
ule approach mentioned in the first scenario. This
approach is called the weak approach.

The implementation of these two approaches is done by send-
ing broadcast messages as well as agent to agent messages. In
case of an infeasible schedule for the newly arrived agent, this
agent will broadcast its deadline to all active product agents. In
reply to this broadcast, agents with a later deadline will send
their claimed production steps to the new agent and this will
try to schedule its production assuming these claimed steps
are now available. If the scheduling succeeds it will try to
reschedule all other active agents. In case of success it will
adjust the scheduling information on the blackboard involved
with the new scheduling and send the new schedules to the
participating agents. By locking the access to the blackboard
by other agents during (re)scheduling, this scheduling action
is atomic.

In [4], it is shown that the approaches weak and strong
result in almost the same rate of successful schedules, having
an average difference in results below 0.5%. Both approaches

2015, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



Strong EDF
10500 Weak EDF possses

Number of preemptions
(4.
a
o
o
R e o e L e s s e s s s s s s

100 200 500 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
Number of products

Figure 21: Number of preemptions for strong and weak EDF.

600000
Strong EDF
550000 - Weak EDF posssss

500000
450000
400000
350000
300000

250000

Number of agents involved

200000

150000 |-

100000 |-

50000 |-

100 200 500 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
Number of products

Figure 22: Number of agents involved for strong and weak EDF.

fulfill objectives 1 and 2. In Figure 21, the number of preemp-
tions for both strong and weak versions of EDF are plotted for
different sizes of test sets. Another important value that gives
and impression of the inter-agent communication overhead
is shown in Figure 22. From both figures it becomes clear
that the amount of overhead in inter-agent communication and
rescheduling calculations used by the strong version is much
higher than the weak version. Objectives 3 and 4 are more
feasible using the weak version. Both versions were already
by design compliant with objective 5. When we consider
the different scheduling algorithms mentioned before, leaving
out fixed priority, and using the weak approach the resulting
number of failures for different numbers of products are plotted
in Figure 23. Earliest deadline first (EDF) turned out to be
a good choice. The success rate is comparable to LSF, but
the advantage of EDF over LSF is that the deadline is a
constant value while the slack changes over time and has to
be recalculated, introducing an extra small overhead.

For the previous and coming simulations, the following
conditions were used:

e  Every product agent has a random number of equiplets

International Journal on Advances in Software, vol 8 no 1 & 2, year 2015, http://www.iariajournals.org/software/

35

2500

2000

1500 |-

Failures

1000 |-

500 -

. L mey Ml -
1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
Number of products

Figure 23: Failure-count for different scheduling algorithms.

1000

800

600

Failures

400

200

2000 4000 6000 8000 10000
Test set size

Figure 24: Simulation Results for different sizes op product sets.

to visit ranging from 1 to 20 with an average of 10
equiplets.

e  The number of timesteps in a simulation run is 10000
and the duration of a production step is 1 timestep.

e The time window between release time and deadline
of a product is random between 1 to 20 times the total
production time of a product. This total production
time in timesteps is in this case equal to to number of
equiplets the product agent has to visit.

e Each equiplet is offering a single unique production
step.

For a set with 10000 product agents, each having an aver-
age number of 10 production steps, the amount of production
steps needed is 100000. During 10000 timesteps the grid
consisting of 10 equiplets is actually offering a maximum of
100000 production steps. Figure 24 shows that in the given
situation of 10000 product agents the number of scheduling
failures is over 1000. In Figure 25, the average number of prod-
uct agents in a manufacturing grid consisting of 10 equiplets is
shown for different sizes of test sets. This information shows

2015, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



80 T

70

60

50

40

Products in grid

30

20

2000 4000 6000 8000 10000
Test set size

Figure 25: Simulation Results for different sizes op product sets.

250

number of préduct-ageﬁts in grid '

200

150

100

number of products

50

0
0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

timesteps

Figure 26: Increasing number of active products in the grid.

that the number of products exceeds the number of equiplets
by far above 8000 products. Given the aforementioned test
conditions, a number of 8000 products compares to a load of
80%. At a load of 80% the number of products, which are not
handled by equiplets and have to wait, is two times the number
of equiplets, resulting in an average of two AGVs waiting for
service by an equiplet.

Another simulation has been set up to study the behaviour
of the grid under increasing load. This simulation is based on
a scenario with a linear increasing amount of product agents
in time as shown in Figure 26. In this situation, a product is
considered active in the grid between its release time and its
deadline. Because of the fact that at the end of the graph, the
grid is actually overloaded, the maximum number of active
agents in the grid will not increase due to the fact that more
and more products will have an infeasible scheduling and will
not contribute to the number of products in the grid. This
effect is shown in Figure 27. The actual number of products
in the grid is shown in Figure 28. This graph is not based
on release time and deadline, but on release time and time
of completion. When we look at the actual number of active
products in the grid, the resulting graph shows an remarkable

International Journal on Advances in Software, vol 8 no 1 & 2, year 2015, http://www.iariajournals.org/software/

180 T T T T — T ——
maximumnumber of products in grid
160 - b
140 } EELL | .
! furh m
120 vt U ]
2 f ¥
°
1
B 100 | N
Q
5
& st
2 )
H |
= n i
60 | i
40 -
20 | \ .
0 L L L L L L L L L
0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
timesteps
Figure 27: Maximum number of active products in the grid.
90 T T T T
actual number of products in grid
80 Tl
I
[
70t I ‘ [
L i
| |
60 - /| 1
2 Al
8 i
3
B 50t
Q
5
g 40t
E
2 ) |
30
20
Iy 1
10 | 1T g
| I\
)l
0 LonutAAHITRITY L L L L ! !
0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

timesteps

Figure 28: Actual number of products in the grid.

shape. In the beginning, the actual number is even less than
the number plotted in the graph of Figure 26. This is due to
the fact that in a grid that is only used by a small amount of
product agents, every product will be finished far before its
deadline. A finished product is now not considered active in
the grid any more. However, at a certain point there is a steep
increase in the number of products and the graph saturates at
the same level of 70 products as shown in Figure 25 for a test
set of 10000. The number of rejected products due to a failing
scheduling will increase. This also means that overloading the
grid will generate many active products that should be stored
somewhere, because in this given situation, only 10 products
can be handled by an equiplet.

VII. CONCLUSION

For the agile grid-based and agent-based manufacturing the
buildingbox as well as the AGV-based system offer advantages:

e By using a building box, the transport of parts to the
assembling machines (equiplets) is combined with the
transport of the product to be made. It will not happen
that a part is not available during manufacturing;

2015, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



International Journal on Advances in Software, vol 8 no 1 & 2, year 2015, http.//www.iariajournals.org/software/

Because the product as well as it parts use one
particular AGV during the production, there is never
a competition for AGV during the manufacturing
process;

An AGV can use the full possibility and advantage
of the grid-based system being a compact design
resulting in short average paths;

The product agent knows which equiplets it should
visit and thus can use the AGV in the same way as
an equiplet. The product agent can instruct the AGV
agent to bring it to the next equiplet in the same
way as it can instruct an equiplet agent to perform
a production step;

An AGYV can bring the production platform exact to
the right position for the equiplet and can even add
extra movement in the X-Y plane or make a rotation
around the Z-axis;

If an AGYV fails during production the problem can be
isolated and other AGVs can continue to work. In a
conveyor belt system a failing conveyor might block
the whole production process.

There are also some disadvantages:

There should be a provision for charging the battery
of the AGV.

Simulations show that the amount of agents in the grid
shows a strong increase in a grid that is loaded over
80%. This will result in a lot of AGVs in the grid
leading to traffic jam;

Only products that fit within the building box manu-
facturing model can be made.

Agent-based grid manufacturing is a feasible solution for agile
manufacturing. Some important aspects of this manufacturing
paradigm have been discussed here. Transport can be AGV-
based provided that the load of the grid should be kept under
80% to overcome the temporary storage requirements and
problems with the communication and rescheduling overhead.

[1]

[2]

[3]

ACKNOWLEDGEMENT

The authors would like to thank Mathijs Kuijl, Bas Alblas,
Jaap Koelewijn, Pascal Muller, Lars Stolwijk, Roy de Kok and
Martijn Beek for their effort and contributions in developing
the software tools.

REFERENCES

L. v. Moergestel, E. Puik, D. Telgen, M. Kuijl, B. Alblas, J. Koelewijn,
and J.-J. Meyer, “A simulation model for transport in a grid-based manu-
facturing system,” Proceedings of the Third International Conference on
Intelligent Systems and Applications (INTELLI 2014), Sevilla, Spain,
2014, pp. 1-7.

E. Puik and L. v. Moergestel, “Agile multi-parallel micro manufacturing
using a grid of equiplets,” Proceedings of the International Precision
Assembly Seminar (IPAS 2010), Chamonix, France, 2010, pp. 271—
282. Springer ISBN-13: 978-3642115974.

L. v. Moergestel, J.-J. Meyer, E. Puik, and D. Telgen, “Decentralized
autonomous-agent-based infrastructure for agile multiparallel manufac-

turing,” Proceedings of the International Symposium on Autonomous
Distributed Systems (ISADS 2011) Kobe, Japan, 2011, pp. 281-288.

(4]

(51

(6]

(71

(8]

[10]

(11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

37

L. v. Moergestel, J.-J. Meyer, E. Puik, and D. Telgen, “Production
scheduling in an agile agent-based production grid,” Proceedings of the
Intelligent Agent Technology (IAT 2012), Macau, 2012, pp. 293-298.

M. Paolucci and R. Sacile, Agent-based manufacturing and control
systems: new agile manufacturing solutions for achieving peak per-
formance. Boca Raton, Fla.: CRC Press, ISBN-13: 978-1574443363,
2005.

E. Montaldo, R. Sacile, M. Coccoli, M. Paolucci, and A. Boccalatte,
“Agent-based enhanced workflow in manufacturing information sys-
tems: the makeit approach,” J. Computing Inf. Technol., vol. 10, no. 4,
2002, pp. 303-316.

S. Bussmann, N. Jennings, and M. Wooldridge, Multiagent Systems for
Manufacturing Control. Berlin Heidelberg: Springer-Verlag, ISBN-13:
978-3642058905, 2004.

N. Jennings and S. Bussmann, “Agent-based control system,” IEEE
Control Systems Magazine, vol. 23, no. 3, 2003, pp. 61-74.

D. Ouelhadj, C. Hanachi, and B. Bouzouia, “Multi-agent architecture
for distributed monitoring in flexible manufacturing systems (fms),”
Proceedings of the IEEE International Conference on Robotics and
Automation (ICRA 2000), San Francisco, CA, USA, 2000, pp. 2416—
2421.

W. Xiang and H. Lee, “Ant colony intelligence in multi-agent dynamic
manafacturing scheduling,” Engineering Applications of Artificial In-
telligence, vol. 16, no. 4, 2008, pp. 335-348.

L. van Moergestel, E. Puik, D. Telgen, H. Folmer, M. Griinbauer,
R. Proost, H. Veringa, and J.-J. Meyer, Enhancing Products by Embed-
ding Agents: Adding an Agent to a Robot for Monitoring, Maintenance
and Disaster Prevention, ser. Communications in Computer and Infor-
mation Science, J. Filipe and A. Fred, Eds. Springer Berlin Heidelberg,
2014, vol. 449, ISBN-13: 978-3662444399.

P. Leitdo, “Agent-based distributed manufacturing control: A state-
of-the-art survey,” Journal on Engineering Applications of Artificial
Intelligence, vol. 22, issue 7, pp. 979-991, Pergamon Press, Inc.
Tarrytown, NY, USA, 2009.

A. Koestler, The Ghost in the Machine. Arkana Books, London, 1969,
Reprinted 1990, Penguin Books, ISBN-13: 978-0140191929.

S. Bussmann and D. McFarlane, “Rationales for holonic manufacturing
control,” Proceedings of the second international workshop on intelli-
gent manufacturing systems, 1999, pp. 177-184.

K. Fisher, “Agent-based design of holonic manufacturing systems,”
Robotics and Autonomous Systems, vol. 27, no. 1-2, 1999, pp. 3-13.
J. Miiller, The design of intelligent agents: a layered approach.
Springer, 1996, ISBN 978-3540620037.

Z. M. Bi, S. Y. T. Lang, W. Shen, and L. Wang, “Reconfigurable
manufacturing systems: the state of the art,” International Journal of
Production Research, vol. 46, no. 4, 2008, pp. 599-620.

M. Sniedovich, “Dijkstras algorithm revisited: the dynamic program-
ming connexion,” Control and Cybernetics, vol. 35, no. 3, 2006, pp.
599-620.

F. Cottet, J. Delacroix, C. Kaiser, and Z. Mammeri, Scheduling in Real-

Time Systems. Chichester, West Sussex: John Wiley and sons, 2002,
ISBN-13: 978-0470847664.

2015, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



