
Automatic Software Adaptation After Reconfiguring an

Autonomous Manufacturing Systems

Daniël Telgen, Leo van Moergestel, Erik Puik, Laurens van den Brink, Tommas

Bakker, Alexander Hustinx, John-Jules Meyer

1
 Department of Micro Systems Technology and Embedded Systems

HU University of Applied Sciences Utrecht

Nijenoord 1, 3552AS Utrecht, The Netherlands

Daniel.telgen@hu.nl
2
 Department of Information and Computing Sciences

Utrecht University,

Princetonplein 5, 3584 CC Utrecht, The Netherlands

J.J.C.Meyer@uu.nl

Abstract When using autonomous reconfigurable manufacturing system, that offers generic

services, there is the possibility to dynamically manufacture a range of products using the

same manufacturing equipment. Opportunities are created to optimally scale the production

using reconfiguration means and automatically manufacture small amounts of unique or

highly customizable products. Basically the result is a short time to market for new products.

This paper discusses the problems that arise when manufacturing systems are reconfigured

and the impact of this action on the entire system. The proposed software architecture and

tooling makes it possible to quickly reconfigure a system without interference to other

system, and shows how the reconfigured hardware can be controlled without the need to

reprogram the software. Parameters that are required to control the new hardware can be

added using a simple tool. As a result reconfiguration is simplified and can be achieved

quickly by mechanics without reprogramming any systems. The impact is that time to market

can be reduced and manufacturing systems can quickly be adapted to current real-time

needs.

1. Introduction

Mass customization of products and a short time to market are important aspects

of the changing manufacturing industry. These aspects of manufacturing are made

possible by advances in technology and new business strategies. Agile

Manufacturing, Lean Manufacturing, Holistic Manufacturing and Flexible

manufacturing [1] are some examples of these strategies which consecutively

focus on agility, efficiency, complexity, and flexibility. In technology additive (3D)

printing and Reconfigurable Manufacturing Systems (RMS) are a driving force for

changes in industry. This impact is especially large with the manufacturing of

products that are made in low to medium quantities. This is for example common in

microelectromechanical (MEMS) products like actuators and sensors, but also in

other high-tech products. These changes combined are changing the market and

enable the emergence of new markets for mass customization.

Reconfigurable Manufacturing Machines are an aspect of current research. This

focuses on how to shorten the time to market and quickly scale manufacturing

means to the demand. This includes research of distributed control systems, where

every system can act autonomously. Cooperating autonomous systems have less

impact on the overall system and are therefore less complex to reconfigure. To

automatically adapt to these changes an automated translation system was

designed that generated the correct hardware instructions based on an abstract

product design [2]. However, while this design was able to translate abstract

product descriptions to specific hardware, it did not fully support changes in the

hardware, i.e., reconfiguration.

This paper focuses on the actual reconfiguration of the hardware and the changes

that are made to the architecture to support reconfiguration processes. The paper

will be outlined as follows. The next chapter will describe previous work and used

methods. Section 3 will describe the three problems that will be addressed in this

paper regarding reconfiguration of hardware and the impact it has on a

Reconfigurable Manufacturing System. Section 4 describes the software

architecture that is used to control all manufacturing systems. Section 5 describes

how the architecture is used to enable simplified reconfiguration while discussing

this in light of the problems as mentioned in section 3. Section 6 will give a general

discussion of the subject, and section 7 mentions future work. Finally the paper

will be concluded in section 8.

2. Background

a. Low cost, single purpose modular and reconfigurable platforms

To enable automatic reconfiguration a standardized platform has been introduced.

This platform is called ‘equiplet’. An equiplet is defined as an autonomous system

with modular hardware that can automatically be reconfigured. An equiplet is low

cost and meant to perform one simple task. Hence, instead of creating one

expensive machine with extensive capabilities an equiplet is substantially cheaper.

Equiplets are designed to perform within a group to achieve the same efficiency

and capabilities with a lower complexity and therefore less chance of failure. A

group of equiplets has been named a grid [3]. A grid uses a flexible transportation

system to transport products dynamically to any available equiplet. Equiplets make

use of an automatic system to translate manufacturing actions, called product

steps, automatically to specific hardware.

b. Automatic generation of control instructions

In related work a system was introduced that translated an abstract product design,

containing manufacturing steps, towards specific instructions that could be send

over an industrial bus to directly control the hardware. This system was originally

designed to be performed in three steps and was implemented with the use of

agent technology [4]. In this design each agent had specific knowledge that was

required for the translation to the next, more specific, level. In the proposed

architecture both manufacturing systems and products are autonomous. All

systems are therefore depicted with a virtual counterpart, the agent.

Product steps

Service steps

Equiplet steps

Steps

Module steps

Abstract

Concrete

Figure 1: Translating several levels of manufacturing steps

As seen in Figure 1, a product is first described with abstract product steps. A

product agent (not shown in the image) dynamically schedules a step at an

autonomous manufacturing machine, the equiplet. The equiplet agent represents

this machine and negotiates with the product agent if it has the correct capabilities

to take the next step within the requested timeframe. If they agree, the product step

will be scheduled at the equiplet; details of the scheduling itself have been

published by van Moergestel et al [5]. The translations are performed in several

steps that become more explicit for a specific equiplet. First the product design

steps are translated to the standardized services that refer to the capabilities that

the equiplets have. This is done by using a set of possible product steps and the

capabilities of all the equiplets to determine the correct translation. After this step is

complete the results are put on the service steps blackboard. The standardized

service steps are then finally translated to specific instructions for the hardware

that will perform the required actions. On the hardware some information does still

need to be added by specific hardware modules. These are called the module

steps. These add extra specific parameters on the hardware level, i.e., position

translations for required kinematics systems. This is similar to systems like

finetuning parameters, that was also introduced by Arkin [6].

This translation system will need to be adapted when systems are reconfigured.

Both translations and capabilities will change if an equiplet is reconfigured. This

paper discusses the parameters that need to be changed and shows some

changes to the architecture to enable reconfiguration of manufacturing systems.

3. Problem Description

Reconfigurable machines classically take a lot of time to reprogram. When a

system is reconfigured all control systems for the modules have to be

reprogrammed, which is classically done by software engineers that add new

functionality to the system. In the proposed system this process is simplified. Using

the automatic translation system some steps of this reconfiguration process can be

automated since it will automatically translate the instructions to the hardware to

the new reconfigured hardware. This eliminates the need to manually reprogram

the control systems.

Some of the translation steps require specific system parameters. Most

manufacturing actions use actuators to perform a specific action at a location in

space. This requires motion planning to move tools to the correct position.

Kinematic models are used to calculate the required movement, i.e., position,

velocity and acceleration, to get to the correct position. Equiplets as shown in

Figure 2 use cameras with computer vision abilities to find the objects. As such a

translation has to be made between both the position found by the camera and the

actions the actuators have to perform to get a tool to the product to perform the

next manufacturing step.

Figure 2: two equiplets with deltarobots and a 6 axis simulator on the right

To be able to create a correct kinematics model and acquire the right position it is

essential to have specific parameters of the hardware modules. Including

calibration of the camera system, positioning of the hardware, measurements of

the tools, etc. Hence, reconfiguration disrupts the possibility to automatically

generate instructions for the hardware. In classic systems reconfiguration would

require the change of software and new coding to adapt all control systems to the

changes.

To enable the automatic translation system, and simplify reconfiguration, several

problems are identified that have to be solved:

1. Identifying the reconfigured hardware

2. Adding the specific parameters of the new reconfigured system

3. Identifying the new capabilities of the reconfigured system

To discuss the required actions to solve these problems, the systems architecture

will be discussed first.

4. Software Architecture

The software architecture is based on a hybrid system using Multi Agent System

(MAS) for the deliberative aspects and Robot Operating System (ROS) for the

reactive aspects [7]. ROS is a software framework that provides middleware

system and libraries for hardware abstraction. Basically, autonomous entities in the

MAS have cognitive abilities to take the necessary decisions using entities in ROS

for performing direct hardware interfacing.

a. Capabilities

Each equiplet in the production environment has certain properties and behaviors

which can be classified as functional capabilities [8]. In a grid each equiplet has

certain capabilities which is provided as a services to the grid. All the services in a

grid can be used by the product agent to manufacture a product. A capability is

defined as a service description combined with the limitations of the service.

Examples of capabilities are pick and place, or draw Line. Limitations of these

capabilities include the boundaries of the workspace. Basically these are defined

as such:

Service = Abstraction of the provided service

Limitation = Min. Weight, Max Weight, Dimensions Limits, etc

Capability = [Service, Limitation]

ProductStep = <Service, Criteria>

Criteria = Weight, Dimensions, etc

A product agent divides the manufacturing of his product into product steps. For

each product steps the agent uses a service of an equiplet. The product agent

defines a product steps by the required service and criteria’s of the service.

Criteria’s of a product step include the dimensions and weigth of the part on which

the service needs to be executed, e.g., one of the criteria would be the dimensions

of an object that needs to be pick and placed, so an equiplet agent knows if he is

able to perform the service.

b. Directory Facilitator

A product agent can find the services in a grid through a Directory Facilitator (DF).

The DF that provides a Yellow Pages service by means of which an agent can find

other agents providing the services he requires in order to achieve his goals

c. Hardware Controller

As was shown in Figure 1, the original design was placed in three levels. Product

steps, service steps and equiplet steps. Product steps are an abstract description

of the step that has been performed, without any knowledge of possible

manufacturing means. Service steps were defined as a translation from the product

steps to available standardized capabilities of the grid. A equiplet step was a

standardized capability translated to specific hardware that will perform the actual

manufacturing.

As seen in Figure 3 this design has been implemented with some slight changes.

The first translation from Product to service step has been taken out, considering

that this was not a direct responsibility of the grid, i.e., in this example a product

agent is created explicitly for this grid. As such the manufacturing steps are already

designed or translated using the capabilities of this grid, eliminating the first

required translation from abstract product steps to service steps. Also the hardware

agent has been changed in two parts, the translation part and intelligent part. The

hardware controller does only provide translations using the specific configuration

parameters and is used by the intelligent equiplet agent. With this implementation

the hardware controller does not require to be autonomous and it has no

interactions anymore with more than one agent, as such it has become an integral

part of the equiplet. Hence, it has been implemented as an object on the Hardware

Abstraction Layer (HAL).

d. Overview

Figure 3 shows an overview of the current software architecture. As shown the

ROS and MAS platforms use a blackboard to uncouple communication and

therefore isolate performance issues to the individual platforms. ROS represents its

processes as nodes, where each node commonly controls an object with its own

process. Nodes use streaming topics to communicate. In the shown architecture

each reconfigurable module, commonly a sensor or actuator, has a node. Besides

the modules the equiplet also have an equiplet node that sends instructions to the

modules on an industrial bus, a lookup handler node to find objects in its physical

surroundings, and an environment cache node that holds several parameters and

data received by the lookup handler.

Figure 3: Software Architecture

On the grid level the logistic manager agent takes care of logistic processes that

happen on a grid level, like transportation for the products between equiplets and

the flow of resources. While each grid only has one grid server, directory facilitator

and Logistic Manager, there can be many Product agents and equiplets. Since

each equiplet is autonomous each has its own computer with all required software

to control the entire equiplet.

5. Reconfiguration

This chapter describes the three steps that are required for a reconfiguration

action. First the reconfiguration itself has to be detected by a trigger, which detects

that a module has been changed. The module is then identified after which the new

required software can be loaded. After the identification, specific parameters that

are required for correct use of the new modules should be added to the equiplet.

Finally the equiplet should recognize its new capabilities and offer its new services

to the grid. These steps will be discussed in more detail:

a. Reconfiguration trigger and identification

As described in the problem description it is required to identify reconfiguration

actions. Depending on the changes the software and capabilities of the equiplet

should be updated at the grid level. Since hardware needs a trigger to start up a

system was devised that simplifies this operation. An equiplet can be set in a ‘safe’

reconfiguration mode where it uses a camera system to detect 2D barcodes that

identifies a module, see Figure 4 for an example. This way the according nodes

that belong to the modules can be removed or added from the equiplet only by

scanning the correct barcodes. Combined with a tool described in the next

subsection parameters can be added without the need for a specialist or engineer

to completely reconfigure the equiplet. Basically the barcodes provide an

abstraction to the corresponding hardware.

Figure 4: 2D barcode

b. Parameter input

The barcode is used to identify the type and unique ID of the reconfigured module.

This can be used to load the required nodes to be able to control it. However, for

control specific parameters are required. Current parameters that are defined for

modules are: moduleType, moduleID, mountSocket, tilt, extraLimitations,

parentModule

moduleType = Containing its type based on its capabilities

moduleID = Contains a unique ID based on model and serial number

mountSocket = x and y location of attachment points

tilt = tilt of the object (e.g., to detect an inverted camera)

 extraLimitations = unique limitations of the module

 parentModule = if a modules is connected to another (e.g. a gripper)

Most of these parameters are known through the unique ID and moduleType.

However, the position of the module attached to the equiplet depends on the

unique configuration of the equiplet. For this purpose a specific tool has been

added to simplify this process. Figure 5 shows a screenshot of this tool. It can be

used to scan the barcodes, but more specifically it also provides a model of the

equiplet. An equiplet uses specific mounts which are known to the equiplet. As

such parameters of the location of the module can easily be extracted by indicating

to which mounts the modules are connected. With the use of the tool a module add

or remove command is triggered, followed with the parameters put in the tool.

These parameters are filled in at the hardware abstraction layer and are used by

the hardware controller that will send the command to add the required nodes so

that they can receive instructions.

Figure 5: Shows the prototype input tool to choose which sockets connect the

module and an overview of the modules and the scanning tool.

Figure 6 gives an overview of all systems with their dependencies, the user input is

relevant as it gives the reconfiguration parameters that are necessary for the

automatic product step translation system.

Product Step

Equiplet
Agent

Capabilities

Product Step

Capabilities

Hardware
Controller

Product
Agent

Equiplet
Node

Instructions

User Input

ROS

HAL

MAS

HARDWARE

Directory
Facilitator

Services Service

Product Steps

Figure 6: System dependencies

The directory facilitator matches services from the equiplet agent and the product.

When a number of possible equiplets are acquired the product negotiates with

several equiplets to schedule a product step. Scheduling algorithms that can be

used are Earliest Deadline First or Least Slack First, which are discussed

specifically for this case in related work by van Moergestel [5]. User input that is

required by the hardware controller is given by the reconfiguration tool, which can

contact a database with the required module information. The equiplet Agent also

uses the hardware controller to acquire the new capabilities.

c. Capability change

When the reconfiguration is complete and the software and parameters of the new

modules are loaded the capability has still to be adapted. Figure 7 shows an

example of an equiplet who changes its capabilities and how a product performs a

step at this equiplet.

Equiplet
Agent

initialization: capabilities

register: [service]

Product
Agent

Directory
Facilitator

initialization: product steps

capable to perform: <service, criteria>

search: service

yes, at time ...
or

no, I'm not capable

perform: <service, criteria, time>

Equiplet
Node

perform: instructions

feedback instructions

feedback

Figure 7: Initialization of Capabilities

The first trigger is given by the tool that triggers the configuration action. When the

reconfiguration is complete the tool has a list of all configured modules. The

combined list of modules with its explicit parameters will determine which

capabilities the equiplet has and send these to the equiplet agent. The agent offers

its capabilities to the grid by registering its capabilities as services by the Directory

Facilitator. This will make the equiplet available for product agents that require

these services. When a product is scheduled at the equiplet it will check if the

detailed capability with the equiplet, including specific criteria. If accepted the

product will be scheduled at the equiplet. When the scheduled time arrives the

equiplet agent will use the translated steps to send the appropriate instructions to

the equiplet nodes through the hardware controller as described in section 2.b.

6. Discussion

Distributed control systems have been discussed in several papers [9]. In many

cases there has been some discussion on the term distributed itself. In the context

described in this paper an equiplet is completely autonomous. From a grid

perspective this makes all equiplets have distributed control, without overall (grid

level) hierarchy. This is in contrast with some that mention sensors and actuators

that are distributed throughout a system with multiple manufacturing machines,

which are hierarchically controlled from one centralized control system. This is

relevant to this paper, since the only adaptation that is required after a

reconfiguration action is to update the capabilities at the Directory Facilitator. This

way the impact on other systems of a reconfiguration action is minimal to none.

To use intelligent agents has also been attempted before. Leitão discusses several

research and industry projects using agents for manufacturing systems [10].

Results of these projects are mostly positive from a technological perspective.

However, while they show potential they are barely adopted by industry. This

becomes even more clear in the work of Bussmann [11], who demonstrated a

successful flexible production line for DaimlerChrysler that was controlled by

agents. However, after several years the production line was not renewed,

basically because of that the economically measurable advantage was hard to

measure. Flexibility makes in principle a difficult business case. Because of this we

focus on not only the flexibility of a manufacturing line, but also the flexibility of the

manufacturing equipment. The expectation is that combining the use of new

technologies like additive printing and simplified reconfiguration of manufacturing

systems opens up new business cases that might be economically viable.

7. Future Work

Current focus is on the reconfiguration aspects and the automatic adaptive control

of the equiplets. Current status is that the translation system and prototypes of the

reconfiguration tool has been developed, all critical systems have been tried in

proof of concepts. However, Some aspects of the architecture as shown in Figure

3 have not been fully developed. In the near future the full system should be

demonstrated with a larger set of possible modules and configurations. Aspects

that will be looked into are the automatic calibration of actuators and camera

computer vision systems to make the reconfigurable even more plug & playable.

This must eventually lead to a system that is completely reconfigurable with the

abilities of standard mechanics, i.e., without interference to other systems or input

from engineer level personnel.

8. Conclusion

This paper considers an approach to automatically adapt the software when a

Manufacturing Systems is reconfigured. It discusses the problems that occur and

gives solutions to how parameters and changes in capabilities can be mitigated

using standard solutions from agent technology. The reconfiguration action

automatically updates its services at a central system. As such the grid

automatically adapts to reconfiguration system without overall system impact.

Products can immediately start using the reconfigured system after this process.

The impact of this work is a greatly reduced time to market, since the

manufacturing systems can be easily reconfigured without impact on other systems

in the grid.

References

[1] H.A. ElMaraghy, "Flexible and reconfigurable manufacturing system

paradigms", International journal Flexible Manufacturing Systems, 17:261-276,

Springer, 2006

[2] D. Telgen, L. van Moergestel, E. Puik, A. van Zanten, A. Abdulamir, J.-J.

Meyer, "Agile product manufacturing by dynamically generating control

instructions," Assembly and Manufacturing (ISAM), 2013 IEEE International

Symposium on , vol., no., pp.282,284, July 30 2013-Aug. 2 2013

[3] E. Puik, and L. van Moergestel, (2010). Agile multi-parallel micro

manufacturing using a grid of equiplets. In Ratchev, S., editor, Precision

Assembly Technologies and Systems, volume 315 of IFIP Advances in

Information and Communication Technology, pages 271– 282. Springer Berlin

Heidelberg.

[4] M. Wooldridge and N. Jennings, “Intelligent Agents: Theory and practice”, The

knowledge Engineering Review, page: 115-152, 1995.

[5] L. van Moergestel, E. Puik, D. Telgen, and J-J. Meyer, ”Production scheduling

in an agile agent-based production grid”, IAT2012 proceedings, 2012.

[6] Ronald C. Arkin, ”Behaviour-Based Robotics”, MIT press, page 205-234,

Hybrid Systems, 1998.

[7] M. Quigley, B. Gerkey, K. Conley, J. Faust, T. Foote, J. Leibs, E. Berger, R.

Wheeler, A. Y. Ng, ”ROS: an open-source Robot Operating System”, Open-

source software workshop of the International Conference on Robotics and

Automation (ICRA), 2009.

[8] E. Järvenpää, P. Luostarin, M. Lanz, and R. Tuokko,”Development of a Rule-

base for Matching Product Requirements against Resource Capabilities in an

Adaptive Production System”, FAIM2012 proceedings, page. 449-456, 2012.

[9] D. Trentesaux, Distributed control of production systems, Engineering

Applications of Artificial Intelligence, Volume 22, Issue 7, Pages 971-978,

2009.

[10] P. Leitão, ”Agent-based distributed manufacturing control: A state-of-the-art

survey”, Journal Engineering Applications, Volume 22, Issue 7, Pages 979–

991, 2009.

[11] S. Bussmann, K. Schild: An Agent-Based Approach to the Control of Flexible

Production Systems. In Proc. of the 8th IEEE Int. Conf. on Emergent

Technologies and Factory Automation (ETFA 2001). Antibes Juan-les-pins,

France, Pages 481-488 (Vol. 2), 2001.

