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Abstract When using autonomous reconfigurable manufacturing system, that offers generic 

services, there is the possibility to dynamically manufacture a range of products using the 

same manufacturing equipment. Opportunities are created to optimally scale the production 

using reconfiguration means and automatically manufacture small amounts of unique or 

highly customizable products. Basically the result is a short time to market for new products. 

This paper discusses the problems that arise when manufacturing systems are reconfigured 

and the impact of this action on the entire system. The proposed software architecture and 

tooling makes it possible to quickly reconfigure a system without interference to other 

system, and shows how the reconfigured hardware can be controlled without the need to 

reprogram the software. Parameters that are required to control the new hardware can be 

added using a simple tool. As a result reconfiguration is simplified and can be achieved 

quickly by mechanics without reprogramming any systems. The impact is that time to market 

can be reduced and manufacturing systems can quickly be adapted to current real-time 

needs.  

 

1. Introduction 

Mass customization of products and a short time to market are important aspects 

of the changing manufacturing industry.  These aspects of manufacturing are made 

possible by advances in technology and new business strategies. Agile 

Manufacturing, Lean Manufacturing, Holistic Manufacturing and Flexible 

manufacturing [1] are some examples of these strategies which consecutively 

focus on agility, efficiency, complexity, and flexibility. In technology additive (3D) 

printing and Reconfigurable Manufacturing Systems (RMS) are a driving force for 

changes in industry. This impact is especially large with the manufacturing of 

products that are made in low to medium quantities. This is for example common in 

microelectromechanical (MEMS) products like actuators and sensors, but also in 

other high-tech products. These changes combined are changing the market and 

enable the emergence of new markets for mass customization. 



 

Reconfigurable Manufacturing Machines are an aspect of current research. This 

focuses on how to shorten the time to market and quickly scale manufacturing 

means to the demand. This includes research of distributed control systems, where 

every system can act autonomously. Cooperating autonomous systems have less 

impact on the overall system and are therefore less complex to reconfigure. To 

automatically adapt to these changes an automated translation system was 

designed that generated the correct hardware instructions based on an abstract 

product design [2]. However, while this design was able to translate abstract 

product descriptions to specific hardware, it did not fully support changes in the 

hardware, i.e., reconfiguration.  

 

This paper focuses on the actual reconfiguration of the hardware and the changes 

that are made to the architecture to support reconfiguration processes. The paper 

will be outlined as follows. The next chapter will describe previous work and used 

methods. Section 3 will describe the three problems that will be addressed in this 

paper regarding reconfiguration of hardware and the impact it has on a 

Reconfigurable Manufacturing System. Section 4 describes the software 

architecture that is used to control all manufacturing systems. Section 5 describes 

how the architecture is used to enable simplified reconfiguration while discussing 

this in light of the problems as mentioned in section 3. Section 6 will give a general 

discussion of the subject, and section 7 mentions future work.  Finally the paper 

will be concluded in section 8.  

 

2. Background 

 

a. Low cost, single purpose modular and reconfigurable platforms 

To enable automatic reconfiguration a standardized platform has been introduced. 

This platform is called ‘equiplet’. An equiplet is defined as an autonomous system 

with modular hardware that can automatically be reconfigured. An equiplet is low 

cost and meant to perform one simple task. Hence, instead of creating one 

expensive machine with extensive capabilities an equiplet is substantially cheaper. 

Equiplets are designed to perform within a group to achieve the same efficiency 

and capabilities with a lower complexity and therefore less chance of failure. A 

group of equiplets has been named a grid [3]. A grid uses a flexible transportation 

system to transport products dynamically to any available equiplet. Equiplets make 

use of an automatic system to translate manufacturing actions, called product 

steps, automatically to specific hardware. 

 

b. Automatic generation of control instructions 

In related work a system was introduced that translated an abstract product design, 

containing manufacturing steps, towards specific instructions that could be send 



over an industrial bus to directly control the hardware. This system was originally 

designed to be performed in three steps and was implemented with the use of 

agent technology [4]. In this design each agent had specific knowledge that was 

required for the translation to the next, more specific, level. In the proposed 

architecture both manufacturing systems and products are autonomous. All 

systems are therefore depicted with a virtual counterpart, the agent.  
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Figure 1: Translating several levels of manufacturing steps 

 

As seen in Figure 1, a product is first described with abstract product steps. A 

product agent (not shown in the image) dynamically schedules a step at an 

autonomous manufacturing machine, the equiplet. The equiplet agent represents 

this machine and negotiates with the product agent if it has the correct capabilities 

to take the next step within the requested timeframe. If they agree, the product step 

will be scheduled at the equiplet; details of the scheduling itself have been 

published by van Moergestel et al [5]. The translations are performed in several 

steps that become more explicit for a specific equiplet. First the product design 

steps are translated to the standardized services that refer to the capabilities that 

the equiplets have. This is done by using a set of possible product steps and the 

capabilities of all the equiplets to determine the correct translation. After this step is 

complete the results are put on the service steps blackboard. The standardized 

service steps are then finally translated to specific instructions for the hardware 

that will perform the required actions. On the hardware some information does still 

need to be added by specific hardware modules. These are called the module 

steps. These add extra specific parameters on the hardware level, i.e., position 

translations for required kinematics systems. This is similar to systems like 

finetuning parameters, that was also introduced by Arkin [6]. 

 

This translation system will need to be adapted when systems are reconfigured. 

Both translations and capabilities will change if an equiplet is reconfigured. This 

paper discusses the parameters that need to be changed and shows some 

changes to the architecture to enable reconfiguration of manufacturing systems.  

 

3. Problem Description  



Reconfigurable machines classically take a lot of time to reprogram. When a 

system is reconfigured all control systems for the modules have to be 

reprogrammed, which is classically done by software engineers that add new 

functionality to the system. In the proposed system this process is simplified. Using 

the automatic translation system some steps of this reconfiguration process can be 

automated since it will automatically translate the instructions to the hardware to 

the new reconfigured hardware. This eliminates the need to manually reprogram 

the control systems.  

 

Some of the translation steps require specific system parameters. Most 

manufacturing actions use actuators to perform a specific action at a location in 

space. This requires motion planning to move tools to the correct position. 

Kinematic models are used to calculate the required movement, i.e., position, 

velocity and acceleration, to get to the correct position. Equiplets as shown in 

Figure 2 use cameras with computer vision abilities to find the objects. As such a 

translation has to be made between both the position found by the camera and the 

actions the actuators have to perform to get a tool to the product to perform the 

next manufacturing step. 

 
Figure 2: two equiplets with deltarobots and a 6 axis simulator on the right 

 

To be able to create a correct kinematics model and acquire the right position it is 

essential to have specific parameters of the hardware modules. Including 

calibration of the camera system, positioning of the hardware, measurements of 

the tools, etc. Hence, reconfiguration disrupts the possibility to automatically 

generate instructions for the hardware. In classic systems reconfiguration would 



require the change of software and new coding to adapt all control systems to the 

changes. 

 

To enable the automatic translation system, and simplify reconfiguration, several 

problems are identified that have to be solved: 

1. Identifying the reconfigured hardware 

2. Adding the specific parameters of the new reconfigured system 

3. Identifying the new capabilities of the reconfigured system 

 

To discuss the required actions to solve these problems, the systems architecture 

will be discussed first. 

 

4. Software Architecture 

The software architecture is based on a hybrid system using Multi Agent System 

(MAS) for the deliberative aspects and Robot Operating System (ROS) for the 

reactive aspects [7]. ROS is a software framework that provides middleware 

system and libraries for hardware abstraction. Basically, autonomous entities in the 

MAS have cognitive abilities to take the necessary decisions using entities in ROS 

for performing direct hardware interfacing. 

 

a. Capabilities 

Each equiplet in the production environment has certain properties and behaviors 

which can be classified as functional capabilities [8]. In a grid each equiplet has 

certain capabilities which is provided as a services to the grid. All the services in a 

grid can be used by the product agent to manufacture a product. A capability is 

defined as a service description combined with the limitations of the service. 

Examples of capabilities are pick and place, or draw Line. Limitations of these 

capabilities include the boundaries of the workspace. Basically these are defined 

as such: 

Service  =  Abstraction of the provided service 

Limitation  =  Min. Weight, Max Weight, Dimensions Limits, etc 

Capability  =  [Service, Limitation] 

ProductStep  =  <Service, Criteria> 

Criteria  = Weight, Dimensions, etc 

 

A product agent divides the manufacturing of his product into product steps. For 

each product steps the agent uses a service of an equiplet. The product agent 

defines a product steps by the required service and criteria’s of the service. 

Criteria’s of a product step include the dimensions and weigth of the part on which 

the service needs to be executed, e.g., one of the criteria would be the dimensions 

of an object that needs to be pick and placed, so an equiplet agent knows if he is 

able to perform the service.  



 

b. Directory Facilitator 

A product agent can find the services in a grid through a Directory Facilitator (DF). 

The DF that provides a Yellow Pages service by means of which an agent can find 

other agents providing the services he requires in order to achieve his goals  

 

c. Hardware Controller 

As was shown in Figure 1, the original design was placed in three levels. Product 

steps, service steps and equiplet steps. Product steps are an abstract description 

of the step that has been performed, without any knowledge of possible 

manufacturing means. Service steps were defined as a translation from the product 

steps to available standardized capabilities of the grid. A equiplet step was a 

standardized capability translated to specific hardware that will perform the actual 

manufacturing.  

 

As seen in Figure 3 this design has been implemented with some slight changes. 

The first translation from Product to service step has been taken out, considering 

that this was not a direct responsibility of the grid, i.e., in this example a product 

agent is created explicitly for this grid. As such the manufacturing steps are already 

designed or translated using the capabilities of this grid, eliminating the first 

required translation from abstract product steps to service steps. Also the hardware 

agent has been changed in two parts, the translation part and intelligent part. The  

hardware controller does only provide translations using the specific configuration 

parameters and is used by the intelligent equiplet agent. With this implementation 

the hardware controller does not require to be autonomous and it has no 

interactions anymore with more than one agent, as such it has become an integral 

part of the equiplet. Hence, it has been implemented as an object on the Hardware 

Abstraction Layer (HAL).  

 

d. Overview 

Figure 3 shows an overview of the current software architecture. As shown the 

ROS and MAS platforms use a blackboard to uncouple communication and 

therefore isolate performance issues to the individual platforms. ROS represents its 

processes as nodes, where each node commonly controls an object with its own 

process. Nodes use streaming topics to communicate. In the shown architecture 

each reconfigurable module, commonly a sensor or actuator, has a node. Besides 

the modules the equiplet also have an equiplet node that sends instructions to the 

modules on an industrial bus, a lookup handler node to find objects in its physical 

surroundings, and an environment cache node that holds several parameters and 

data received by the lookup handler.  

 



 
Figure 3: Software Architecture 

 

On the grid level the logistic manager agent takes care of logistic processes that 

happen on a grid level, like transportation for the products between equiplets and 

the flow of resources. While each grid only has one grid server, directory facilitator 

and Logistic Manager, there can be many Product agents and equiplets. Since 

each equiplet is autonomous each has its own computer with all required software 

to control the entire equiplet.   

 

5. Reconfiguration 

This chapter describes the three steps that are required for a reconfiguration 

action. First the reconfiguration itself has to be detected by a trigger, which detects 

that a module has been changed. The module is then identified after which the new 

required software can be loaded. After the identification, specific parameters that 

are required for correct use of the new modules should be added to the equiplet. 

Finally the equiplet should recognize its new capabilities and offer its new services 

to the grid. These steps will be discussed in more detail: 

 

a. Reconfiguration trigger and identification 

As described in the problem description it is required to identify reconfiguration 

actions. Depending on the changes the software and capabilities of the equiplet 

should be updated at the grid level. Since hardware needs a trigger to start up a 



system was devised that simplifies this operation. An equiplet can be set in a ‘safe’ 

reconfiguration mode where it uses a camera system to detect 2D barcodes that 

identifies a module, see Figure 4 for an example. This way the according nodes 

that belong to the modules can be removed or added from the equiplet only by 

scanning the correct barcodes. Combined with a tool described in the next 

subsection parameters can be added without the need for a specialist or engineer 

to completely reconfigure the equiplet. Basically the barcodes provide an 

abstraction to the corresponding hardware.   

 
Figure 4: 2D barcode 

b. Parameter input 

The barcode is used to identify the type and unique ID of the reconfigured module. 

This can be used to load the required nodes to be able to control it. However, for 

control specific parameters are required. Current parameters that are defined for 

modules are: moduleType, moduleID, mountSocket, tilt, extraLimitations, 

parentModule 

moduleType  = Containing its type based on its capabilities 

moduleID  = Contains a unique ID based on model and serial number 

mountSocket  = x and y location of attachment points 

tilt   = tilt of the object (e.g., to detect an inverted camera)  

 extraLimitations = unique limitations of the module 

 parentModule  = if a modules is connected to another (e.g. a gripper) 

 

Most of these parameters are known through the unique ID and moduleType. 

However, the position of the module attached to the equiplet depends on the 

unique configuration of the equiplet. For this purpose a specific tool has been 

added to simplify this process. Figure 5 shows a screenshot of this tool. It can be 

used to scan the barcodes, but more specifically it also provides a model of the 

equiplet. An equiplet uses specific mounts which are known to the equiplet. As 

such parameters of the location of the module can easily be extracted by indicating 

to which mounts the modules are connected. With the use of the tool a module add 

or remove command is triggered, followed with the parameters put in the tool. 

These parameters are filled in at the hardware abstraction layer and are used by 

the hardware controller that will send the command to add the required nodes so 

that they can receive instructions.  

  



 
Figure 5: Shows the prototype input tool to choose which sockets connect the 

module and an overview of the modules and the scanning tool. 

 

Figure 6 gives an overview of all systems with their dependencies, the user input is 

relevant as it gives the reconfiguration parameters that are necessary for the 

automatic product step translation system. 
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Figure 6: System dependencies 

 

The directory facilitator matches services from the equiplet agent and the product. 

When a number of possible equiplets are acquired the product negotiates with 

several equiplets to schedule a product step. Scheduling algorithms that can be 

used are Earliest Deadline First or Least Slack First, which are discussed 

specifically for this case in related work by van Moergestel [5]. User input that is 

required by the hardware controller is given by the reconfiguration tool, which can 

contact a database with the required module information. The equiplet Agent also 

uses the hardware controller to acquire the new capabilities.  



c. Capability change 

When the reconfiguration is complete and the software and parameters of the new 

modules are loaded the capability has still to be adapted.  Figure 7 shows an 

example of an equiplet who changes its capabilities and how a product performs a 

step at this equiplet.  
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Figure 7: Initialization of Capabilities 

 

The first trigger is given by the tool that triggers the configuration action. When the 

reconfiguration is complete the tool has a list of all configured modules. The 

combined list of modules with its explicit parameters will determine which 

capabilities the equiplet has and send these to the equiplet agent. The agent offers 

its capabilities to the grid by registering its capabilities as services by the Directory 

Facilitator. This will make the equiplet available for product agents that require 

these services. When a product is scheduled at the equiplet it will check if the 

detailed capability with the equiplet, including specific criteria. If accepted the 

product will be scheduled at the equiplet. When the scheduled time arrives the 

equiplet agent will use the translated steps to send the appropriate instructions to 

the equiplet nodes through the hardware controller as described in section 2.b. 

 

6. Discussion 

Distributed control systems have been discussed in several papers [9]. In many 

cases there has been some discussion on the term distributed itself. In the context 

described in this paper an equiplet is completely autonomous. From a grid 

perspective this makes all equiplets have distributed control, without overall (grid 

level) hierarchy. This is in contrast with some that mention sensors and actuators 



that are distributed throughout a system with multiple manufacturing machines, 

which are hierarchically controlled from one centralized control system. This is 

relevant to this paper, since the only adaptation that is required after a 

reconfiguration action is to update the capabilities at the Directory Facilitator. This 

way the impact on other systems of a reconfiguration action is minimal to none. 

 

To use intelligent agents has also been attempted before. Leitão discusses several 

research and industry projects using agents for manufacturing systems [10]. 

Results of these projects are mostly positive from a technological perspective. 

However, while they show potential they are barely adopted by industry. This 

becomes even more clear in the work of Bussmann [11], who demonstrated a 

successful flexible production line for DaimlerChrysler that was controlled by 

agents.  However, after several years the production line was not renewed, 

basically because of that the economically measurable advantage was hard to 

measure. Flexibility makes in principle a difficult business case. Because of this we 

focus on not only the flexibility of a manufacturing line, but also the flexibility of the 

manufacturing equipment. The expectation is that combining the use of new 

technologies like additive printing and simplified reconfiguration of manufacturing 

systems  opens up new business cases that might be economically viable.  

  

7. Future Work 

Current focus is on the reconfiguration aspects and the automatic adaptive control 

of the equiplets. Current status is that the translation system and prototypes of the 

reconfiguration tool has been developed, all critical systems have been tried in 

proof of concepts. However, Some aspects of the architecture as shown in Figure 

3 have not been fully developed. In the near future the full system should be 

demonstrated with a larger set of possible modules and configurations. Aspects 

that will be looked into are the automatic calibration of actuators and camera 

computer vision systems to make the reconfigurable even more plug & playable. 

This must eventually lead to a system that is completely reconfigurable with the 

abilities of standard mechanics, i.e., without interference to other systems or input 

from engineer level personnel.  

 

8. Conclusion 

This paper considers an approach to automatically adapt the software when a 

Manufacturing Systems is reconfigured. It discusses the problems that occur and 

gives solutions to how parameters and changes in capabilities can be mitigated 

using standard solutions from agent technology. The reconfiguration action 

automatically updates its services at a central system. As such the grid 

automatically adapts to reconfiguration system without overall system impact. 

Products can immediately start using the reconfigured system after this process. 

The impact of this work is a greatly reduced time to market, since the 



manufacturing systems can be easily reconfigured without impact on other systems 

in the grid.   
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