
OpenLabs Electronics
A Remote Electronics Laboratory

André van Schoubroeck
September 2008 until January 2009, Ronneby (Sweden)

INTERNSHIP REPORT FOR FONTYS HOGESCHOOL ICT

Information about the student:

Name A.H.L. Van Schoubroeck
Student ID Fontys 2076950
Student ID BTH anvf08
Course Engineering and Computing

Technology, Full-Time
(Dutch: Technische Informatica)

Internship Period September 2008 until January 2009

Information about the institution:

Name Blekinge Tekniska Högskola
Department OpenLabs Electronics Lab
Project Leader Ingvar Gustavsson
Host College Supervisor Johan Zackrisson
Home College Supervisor Dick van Schenk Brill

Information about this report:

Title OpenLabs Electronics
A Remote Electronics Laboratory

Date 10 January 2009

Read and signed by host college supervisor and project leader

Date: Date:

Johan Zackrisson, Ingvar Gustavsson,

Preface

This rapport was written in context of my internship at Blekinge Tekniska
Högskola, a University College in Sweden.

During my internship I've been working on various tasks within the OpenLabs
project. I have been programming in ActionScript, C and C++. I've been
exploring possibilities to enhance the project and realising it. In this report I will
write about my work during my internship.

I would like to thank Dick van Schenk Brill (from the Fontys University of
Applied Sciences in Eindhoven, the Netherlands) and Ingvar Gustavsson (from
Blekinge Tekniska Högskola in Ronneby, Sweden) for giving me the possibility
to do my internship at Blekinge Tekniska Högskola.

I would also like to thank my technical supervisor and colleague Johan
Zackrisson for giving me the opportunity to work on this project. I also thank
my other colleague Kristian Nilsson. It has been a pleasure to work with both of
my colleagues.

Index

Summary 4
Samenvatting 5
Sammanfattning 6

Terms and abbreviations 7

1 Introduction 8

2 The Institution 9
2.1 Introduction 9
2.2 History 9
2.3 Education at BTH 10
2.4 Research at BTH 10
2.5 OpenLabs 11
2.6 VISIR 12
2.7 OpenLabs Electronics Lab 13

3 The assignment 14
3.1 Initial situation 14
3.2 Objectives 19
3.3 Assignment 21
3.4 Development Method 21

4 Front Panels 22
4.1 Flash CS3 22
4.2 Soft Panels 22
4.3 NI DC-Power 23
4.4 NI Digital Multimeter 26
4.5 NI Function Generator 28
4.6 NI Oscilloscope 31

5 Proxies 37
5.1 Direct CGI proxy 37
5.2 Blocking sockets 37
5.3 Time-outs on sockets 38
5.4 Using a daemon 39
5.5 Keeping the connection alive 40
5.6 UNIX sockets 41

6 Direct Instrument Control 42
6.1 IVI API 42
6.2 Hardware Identification 43
6.3 Loading the driver 46
6.4 From C to C++ 46
6.5 Power Supply Class 47
6.6 Multimeter Class 47
6.7 Function Generator Class 48
6.8 Oscilloscope Class 48
6.9 Different Hardware 50
6.10 The Matrix 51

7 Conclusions 53

Evaluation 54

List of references 55

Attachment A Project Plan
Attachment B A flexible electronics lab
Attachment C VISIR

Summary

The project has been executed at Blekinge Tekniska Högskola, a Swedish
University College. Blekinge Tekniska Högskola has developed a project to
support distant students with on-line experiments, which is called the
OpenLabs project. The OpenLabs project is an umbrella project, and contains
different projects, all offering on-line experiments to students in different
subject.

This report will focus on the OpenLabs Electronics project, a project that allows
students to perform electronic experiments on-line.

The interface the students can use to operate the measurement equipment
designed according to real equipment, like a multimeter, power supply,
function generator and oscilloscope. Using this interface, students can learn
how to operate the real instruments, but this interface is not optimised for
being used as a computer interface. Therefore a new interface has been
created, designed after a software-based interface designed by National
Instruments.

Not only the interface has been improved, the software performing the
measurements has been upgraded as well. A new proxy software has been
written to enhance the performance. The software that performs the actual
experiments has also been improved. The initial software depended on LabView
to control the measurement equipment and the circuit the measurement is
performed on. LabView is a graphical programming environment. Because of
this, it's hard to keep track of changes in the code, making hard to maintain.
A LabView license is required to run the server.

This dependency has been removed by integrating the control into the
software that performs the experiments. The requirement to have a LabView
license has been removed, the code is easier to maintain. Because the entire
processing of the measurement request is handled by one single program, the
integration results also in a performance improvement.

4

Samenvatting

Het project heeft plaatsgevonden aan Blekinge Tekniska Högskola, een
hogeschool in Zweden. Deze hogeschool heeft een project ontwikkeld dat thuis
studerende studenten in staat stelt om practica uit te voeren via het internet.
Dit project heet het OpenLabs project. Het OpenLabs project is een
overkoepelend project en bestaat uit verschillende projecten, die elk online
practica aanbiedt op verschillende vakgebieden.

Dit verslag gaat over een van die projecten, namelijk het OpenLabs Elektronica
Project. Met dit project kunnen studenten online elektronische circuits bouwen
en doormeten.

Studenten kunnen een voeding, een multi meter, een functie generator en een
oscilloscoop bedienen. De interface is ontworpen met bestaande
meetinstrumenten als uitgangspunt, zodat studenten kunnen leren hoe deze
meetinstrumenten bediend moeten worden. Een fysiek meetinstrument
nabootsen op een computerscherm is niet ideaal, want een fysiek
meetinstrument is niet ontworpen met bediening via een computerscherm in
gedachten. Daarom zijn er nieuwe bedieningspanelen ontworpen, met een
bestaande computergebaseerde interface als uitgangspunt, namelijk de Soft
Panels van National Instruments.

Niet alleen de bediening van het OpenLabs Elektronica project is verbeterd, ook
in de software die de metingen uitvoert zijn verbeteringen doorgevoerd. Er is
een nieuw proxy programma ontwikkeld, dat betere prestaties levert dan de
oudere variant. Daarnaast is het programma dat de experimenten verwerkt
verbeterd. De oude implementatie is afhankelijk van LabView om met de
meetinstrumenten te communiceren. LabView is een grafische
programmeertaal. Dit heeft tot gevolg dat het lastig is om wijzigingen bij te
houden, en daarom is onderhoud aan LabView code niet gemakkelijk.
Daarnaast is voor een in LabView geschreven programma, LabView zelf ook
vereist, en moet deze dus ook aangeschaft worden om het project te kunnen
gebruiken.

Deze afhankelijkheid is verwijderd door de communicatie met de
meetapparatuur te integreren in de server programmatuur. Hierdoor is de code
makkelijker te onderhouden, en hoeft er geen LabView meer aangeschaft te
worden. Deze integratie levert ook een prestatieverbetering op omdat alles nu
binnen één programma wordt geregeld.

5

Sammanfattning

Projekten har utförts på Blekinge Tekniska Högskola. Högskolan har utvecklat
flera projekt för att erbjuda experiment till distansstudenter. Dessa tillhör
OpenLabs, som är det övergripande projektet. OpenLabs innehåller olika
projekt. Varje projekt har online experiment i annat subjekt.

Rapporten beskriver ett av projekten, OpenLabs elektronik labb, där studenter
kan bygga elektroniska kretsar och mäta på dessa.

Studenter kan använda mätinstrument som imiterar verkliga instrument.
Verkliga instrument är inte alltid lämplig att använda på en dataskärm. Därför
har nya instrumentfrontpaneler utvecklats. Instrumentfrontpanelerna
efterliknar National Instruments Soft Panels, vilka lämpar sig för dataskärmen.

Förutom frontpanelerna har även interna funktioner förbättrats. Ny proxy
programvara har skrivits. Den nya proxy programvaran är snabbare än den
gamla. Programvaran som utföra experimenten har också förbättrats. Den
gamla programvara som utföra experiment beror på LabView som
kommunicerar med mätinstrumenten. LabView är grafisk
programmeringsspråk. Detta försvårar underhåll. Underhåll är inte lätt. Den
som använder programvara skriver i LabView, måste köpa en LabView licens.

Beroendet av LabView har tagits bort, genom att integrera kommunikation
med mätinstrumenten från programvaran som utför experiment. Det gör koden
lättare att underhålla och man behöver inte köpa LabView. Eftersom allt
integreras i en mjukvara blir den snabbare.

6

Terms

ActionScript Programming Language used by Flash.
Base-64 Encoding to encode binary data into text
Daemon Program without user interface that runs in the

background performing a specific task.
Equipment Server Server that interfaces with the measurement

equipment.
Flash Program to create web applications.
Flash Client User Interface for OpenLabs Electronics written in Flash
Front Panel Component of the Flash Client to operate a specific

instrument
LabView Graphical programming language with interfaces to

measurement equipment
Measurement Server Server that receives and verifies measurement requests
OpenLabs Projects for remote controlled laboratories
Proxy A program that receives data and retransmits it
Socket Interface for network programming
Soft Panel Software Interface to control National Instruments

Equipment
Switching Matrix Stackable boards that build up electronic circuits

Abbreviations

API Application Programming Interface
BTH Blekinge Tekniska Högskola
CGI Common Gateway Interface
DC Direct Current
GPIB General Purpose Interface Bus
HTTP Hypertext Transfer Protocol
IVI Interchangeable Virtual Instrument
NI National Instruments
PHP PHP: Hypertext Preprocessor
PXI PCI eXtensions for Instrumentation
TCP Transmission Control Protocol
UNIX Uniplexed Information and Computing System
USB Universal Serial Bus
VISIR Virtual Systems in Reality
XML eXtensible Markup Language

7

1. Introduction

Blekinge Tekniska Högskola is a University College in Sweden. Blekinge
Tekniska Högskola does not only offer courses at it's campuses, but also
distance courses.

Blekinge Tekniska Högskola developed a project to allow distant student to
perform real laboratory experiments. This is the OpenLabs project.

This rapport focusses on the OpenLabs Electronics Project and the
improvements made to this project. For example the user interface has been
upgraded to support different ways of interacting with the software.

Better performance has been realised by exploring and implementing new http
proxy software. The new http proxy is not the only performance enhancement
made to the project. The software that processes measurement requests has
been improved as well. A new software module has been realised to enable the
measurement software to communicate with the hardware directly, without the
need of yet another program, as was the case in the old implementation.

In Chapter 2 information about the institution will be provided. Chapter 3 will
explain the assignment. In the next chapters the different aspect of the
assignment will be explained. Chapter 4 will discuss creation of new front
panels. Chapter 5 will discuss a CGI based proxy and chapter 6 will discuss the
IVI and USB drivers and their integration into the measurement server.

8

2. The Institution

This chapter will provide information about Blekinge Tekniska Högskola.

2.1 Introduction

Blekinge Tekniska Högskola (BTH) is a Swedish University College.
(Swedish: Högskola)

Its official English name is “Blekinge Institute of Technology”
It is located in Blekinge län, a province in the South-East of Sweden.
BTH has three campuses: in Karlskrona Campus Gräsvik,
in Ronneby SoftCenter and in Karlshamn Campus Karlshamn.
BTH employs five hundred forty five (545) people.

2.2 History

BTH was founded in 1989. It used to have a different name when it was
founded: Högskolan I Karlskrona-Ronneby (HK/R).
In 1999 the Institute was granted the right to run Ph.D.
programmes in Engineering. In that year the institute also
merged with The Baltic International School of Health. In 2000
the institute opened a third campus, Campus Karlshamn and got
renamed to Blekinge Tekniska Högskola.
In 2001 BTH got officially validated to award the Degree of
Master of Science in Engineering, and in 2002 the general right
to award Master degrees.

9

Image 2.1
Blekinge län

Image 2.2
BTH logo

2.3 Education at BTH

Blekinge Tekniska Högskola offers about forty (40) full-time study programmes
and about four hundred seventy (470) single subject courses. Blekinge Tekniska
Högskola offers sixteen (16) Master Degree Study Programmes.

At Blekinge Tekniska Högskola there are approximately seven thousand three
hunded (7300) registered students. One thousand (1000) of those students are
international students. About one thousand six hundred (1600) students take
their courses via Internet based teaching.

The courses Blekinge Tekniska Högskola offers cover different areas.
Three percent (3%) of the students at BTH study medicines.
Four percent (4%) if the students study human science.
Eight percent (8%) of the students study physics.
Eleven percent (11%) of the students study health care.
Fifteen percent (15%) of the students study economics.
Fifty-nine percent (59%) of the students study the area of telecommunication.

2.4 Research at BTH

BTH is authorised to do research in engineering and award post-graduate
degrees in that area. Research account about one-third of the institutes
activities. Research programmes are carried out in co-operation with other
universities.

There are fourteen (14) doctoral degree study programmes at BTH, one
hundred and twelve (112) doctoral students registered at BTH and twenty six
(26) professors working at BTH.

10

2.5 OpenLabs

OpenLabs is an umbrella project that covers four different projects that share a
common goal: Providing resources for distant students.

Within the OpenLabs Project there are four projects: Antenna theory,
Electronics, Security and Vibration Analysis. These projects offer students to
perform experiments in these areas over the internet.

To understand a theory, it's important to apply the theory in practice. Although
there are many software programs that can simulate experiments, their results
can sometimes be inadequate because they only simulate a mathematical
model.

Running a real laboratory, for students to perform experiments in, is expensive,
and the resources are limited. The number of students is increasing, and it will
be costly to expand the laboratories to meet the increasing number of
students.

A remote laboratory can be used to offer experiments to distant students. It
can also be used by students on the campus to prepare for a real lab session,
so students can use the limited time they have in the real laboratories more
efficient.

Opposed to a normal laboratory, the equipment in a remote laboratory can be
used my multiple people at the same time. Therefore a remote laboratory is
more efficient then a normal laboratory.

11

2.6 Virtual Systems in Reality (VISIR)

The Electronics Lab started in 1999 at Blekinge Tekniska Högskola as a
supplement to local laboratories, to make experiments more accessible for
students. The OpenLabs project initiated a big interest worldwide.

In 2006 the Virtual Systems in Reality (VISIR) Initiative was created, a co-
operation between Blekinge Tekniska Högskola, National Instruments and
Axiom EduTech. Together they work on creating remote laboratories, and
release open source software to run them.

Many universities are interested in the OpenLabs project. Among them are:
Carinthia Universitiy of Applied Sciences in Austria,
Gunadarma University in Indonesia,
ISEP in Portugal
Princess Sumaya University for Technology in Jordan,
UNINOVA in Portugal
University of Genoa in Italy,
University Transilvania of Brasov in Romania.

FH Campus Wien in Austria and University of Deusto in Spain are already using
the OpenLabs Electronics project.

12

2.7 OpenLabs Electronics Lab

The OpenLabs Electronics Lab is the project within OpenLabs that offers
distance students to run experiments on electronic circuits through a web
interface. The assignment discussed in this rapport was executed in context of
the OpenLabs Electronics Lab.

Image 2.7: Organogram

13

Blekinge Tekniska Högskola

OpenLabs

Electronics

Signal processing Security

Antenna theory

3. The assignment

This chapter will explain the initial situation, the project goals and the
assignment.

3.1 Initial situation

The OpenLabs electronics laboratory is currently running and serving many
students with measurements.

Students can compose a circuit on a breadboard and do measurements on it.
Measurements can be performed using a digital multimeter, a DC power supply, a function
generator and an oscilloscope.

Image 3.1.1: Breadboard front panel

14

The OpenLabs Electronics Laboratory is operated through a web interface,
displaying an image of measurement equipment students work with in real
laboratories as well. This way the students can operate equipment they are
familiar with. The instruments used in the laboratories are a Fluke 23
multimeter, an Hewlett Packard 33120A function generator, an Hewlett
Packard 54622A oscilloscope, and an Agilent E3631A power supply.

15

Image 3.1.2: Real equipment used in electronic experiments

The circuits students compose and measure on will be built and connected to
the measurement equipment.

Currently the system doing so consists of three components, a web interface
that allows students to compose circuits and set up measurement equipment.
This component is called the Flash Client. The Flash Client consist of Front
Panels, each controlling a different measurement equipment or the circuit. The
Flash Client will send the information about the circuit and equipment set-up to
the Measurement Server using an XML-based protocol. The Measurement
Server verifies the circuit and sends it to the the Equipment Server using a
serialised string based protocol.

The Equipment Server will then configure the equipment and receive the
measurement results from the equipment. After that the result is returned to
the Measurement Server, which will send the result to the Front Panel, and the
result will be visible on the Flash Client.

16

Image 3.1.4: Overview of components of OpenLabs Electronics

Flash Client Measurement
Server

Equipment
Server

Circuit and
measurement

Instrument
set-up

Instrument
set-up

Measurement
result

Measurement
result

XML Serial
Data

The Flash Client is written in ActionScript 3.0 (AS3). This is the coding language
used by Adobe Flash.
The Flash program will run within a web browser, and is embedded in a
website. The Measurement Server is written in C++. The server runs on a
Microsoft Windows Operating System.
The Equipment Server is written in LabView. It will run within the LabView
environment.

Some students desire to communicate using HTTP, because their firewall might
block the traffic otherwise. For this reason it's possible to connect through a
proxy. The current HTTP proxy is implemented as a PHP script on the web-
server.

In order to do measurements on the circuit the students compose, it will have
to be built. Building the circuits is done by a USB controlled switching matrix.
This is a matrix consisting of several cards. Each card contains a number of
relays. There are two major types of cards. Component cards and Equipment
cards. Depending on the card type, the card contains electronic components
sush as resistors, capacitors and coils, or connections for measurement
equipment.

17

Image 3.1.5: The USB Matrix

The measurements in the remote laboratory are performed using equipment
that differs from what the students would use a real laboratory. The used
hardware to perform the measurements are National Instruments (NI) devices,
positioned in a PXI box connected to the measurement computer. The used
multimeter is an NI-4072, the function generator is an NI-5402, the oscilloscope
is an NI-5112 and the DC power supply is an NI-4110

18

Image 3.1.6: PXI Box

3.2 Objectives

There are several objectives in the OpenLabs project. Creating new Front
Panels, creating a new proxy implementation and integrating the equipment
server into the measurement server.

3.2.1 Front Panels

One of the objectives is to have multiple front panels, so the students have a
choice which front end they wish to use. This way the students have the
freedom of choosing how to operate the emulated measurement equipment
they shall be using in real laboratories.

The goal is to create new front panels that behave similar to the Soft Panels
provided by National Instruments. Soft Panels are software interfaces to
measurement equipment. National Instruments is the supplier of the used
measurement equipment, and also supports the project. Therefore front panels
with similar interface to the Soft Panels are desired, to promote National
Instruments.

3.2.2 New proxy implementation

Another objective is to create a new proxy implementation. The current proxy
implementation is a simple PHP script. PHP is an interpreted language,
therefore it's not as fast as binary code.

Therefore a new proxy written in C should be created. Code written in C
compiles to binary code, and so it should improve performance.

3.2.3 Integration of equipment and measurement servers

Another goal to the project is to research and create alternative ways to control
the measurement equipment and the USB Matrix, without the need for a
LabView server. Since LabView is a graphical programming environment, it is
hard to maintain the code. As opposed to text based programming, it is not
easy to compare different revisions of the software, and upgrading the code
could take up a long time. This problem could be solved by writing the code in
a text based programming language.

19

Another reason to research alternative ways to control the measurement
equipment and the USB matrix is a possible speed improvement. In the initial
situation, the measurement and equipment server are separate servers
communicating using a TCP connection. Because of this the performance is
reduced. LabView code does not compile into a binary program, and therefore
is not as fast as binary code.

Integrating the code that controls the measurement equipment and the USB
matrix into the measurement server may result in a performance improvement.

Next to the performance improvement and the benefits of being able to control
the source in a more flexible way, an integrated server will also reduce the
costs for running the system, since the dependency on LabView will be
removed, and so a LabView license will no longer be required.

20

3.3 Assignment

From the objectives follow the assignments as creating new front panels that
look and behave like the National Instruments Soft Panels, creating a new proxy
implementation and researching for alternative ways to control the
measurement equipment and USB matrix.

3.4 Development Method

An Agile Software Development Method is used during this project. This method
of software development requires frequent face-to-face communication with
the other team members. At least once a week, but often more frequent, the
progress will be discussed with the other team members.

During Agile software development is a flexible development method and
changed to the product can be applied without much trouble. Progress is
discussed frequently and team members can adjust to changed requirements.

Agile Software Development only work for people with a certain attitude to the
work. People who work using an Agile development method need to the urge
to achieve their goals, and the creativity to come up with a good solution for
the problem at hand. Agile software development will not work for people who
lack this attitude.

Because Agile Software Development needs frequent face-to-face
communication with the other members it can only work for small teams. This
can also be a disadvantage of this method. If one team member gets ill for a
long time it can drastically slow down the project.

21

4. Front Panels

The first objectivewas to create new front panels that look and behave like the
soft panels supplied by National Instruments. In this chapter the creation of
those front panels will be elaborated on.

4.1 Flash CS3

The front panels in the OpenLabs Electronic project are created using
Flash CS3. To create a Front Panel using flash, a Flash File containing widgets
and code written in ActionScript 3.0 is needed. ActionScript 3.0 is an ECMA-
derived scripting language. The ActionScript language is close to Java.

4.2 Soft Panels

The Front Panels were designed after the Soft Panels from National Instruments,
so the Soft Panels had to be analysed first. Soft Panels are software interfaces
to control the measurement equipment. The Soft Panels from National
Instruments come with the drivers for their measurement equipment, and
communicate directly with the hardware. The Soft Panels also support an
emulation mode, and can be used without hardware attached to the system.
However, the emulation mode has no option to alter the signals emulated, so
it's not suitable as a replacement for analysing it's behaviour in reality.

22

4.3 NI DC-Power

The NI DC-Power Soft Panel is a Soft Panel for a DC Power Supply. It is shown in
image 4.3.1. It consists of three output channels, which voltage and current can
be set independently.

The Soft Panel from National Instruments supports the following configuration
of channels

Channel Voltage Range Current Range
Channel 0 0 till +6 Volts 0 till 1 Ampere
Channel 1 0 till +20 Volts 0 till 1 Ampere
Channel 2 0 till -20 Volts 0 till 1 Ampere

Image 4.3.1 : National Instruments DC-Power Soft Panel

At the left (1) the channel can be configured and at the right (2) the current
output will be displayed.

23

Since all thee channels are the same, except for the allowed ranges, it is
possible to create one channel and re-use it. This way the same work doesn't
need to be done three times, and if a change is required, it only needs to be
done once.

A single channel without values is designed. When the Flash Clients runs, it will
display the channel three times with the values filled in.

24

Image 4.3.2 : Flash Front Panel, one DC-Power Channel

Image 4.3.3 : Flash DC-Power Front Panel

The resulting front panel looks similar to the original National Instruments Soft
Panel, but it still differs due the use of different widgets. The Front Panel uses
the widgets native to Flash.

Another thing that's different is the behaviour when values are changed. On
the original Soft Panel, the output values are immediately adjusted when the
user changes the values in the interface. This behaviour requires a direct
connection to the hardware. Since the Flash Client is designed to run on a
remote system, it cannot behave like this. In stead, the output values will only
be updated upon a new measurement.

25

4.4 NI Digital Multimeter

The NI Digital Multimeter Soft Panel is a Soft Panel for a Digital Multimeter.
It is shown in image 4.4.1 and will be explained below.

At the bottom (1) left there are buttons to select which function the user desires
to measure. Possible measurements are DC and AC voltage, DC and AC current,
Frequency, 2-wire and 4 wire resistance, capacitance, inductance and diode.

At the right of the measurement buttons (2), the user can select the desired
measurement range and resolution. At the rightmost (3) there are options like
AutoZero, Min/Max and Null Offset.

At the upper right there are scaling options.(4) The user can select a multiplier
and an offset that will be applied to the measured value. Below the scaling
options there is a calculation option. This option can be used to display the
values in dB and dBm.

At the top left (5), the measurement result will be displayed (A), along with the
current scaling (B) and resolution(C) information and an indication of the
measurement value compared to the selected measurement range (D).

26

Image 4.4.1: NI Digital Multimeter Soft Panel

The Flash Front Panel differs in a few points from the original National
Instruments Soft Panel. Some options have been disabled due the configuration
of the system. For example the “Power Line” and “Filter” options, to select a
compensation for the power line, are not available, because the frequency of
the power line the measurement equipment is connected to will never change,
so it's unnecessary to change this value. The “Offset Compensation” option, to
compensate the cables used during the measurement, has also been disabled
because it's not possible to apply this option in combination with the matrix,
since it needs to be performed on the cables which cannot be disconnected
from the matrix in a running system. The “Minimal Frequency” option has been
disabled as well, because applying high values to this option can drastically
slow down the measurement.

Image 4.4.2: Flash Digital Multimeter Front Panel

27

4.5 NI Function Generator

The NI Function Generator Soft Panel is a Soft Panel to control a Function
Generator. It is shown in image 4.5.1 and will be explained below.

In the black area of the window (1), the current output setting is displayed. This
can either be frequency, amplitude, DC-offset or start phase, depending on the
option chosen from a drop down list-box at the top right of the window(2). Below
this drop- down list-box there is a wheel (3) the user can turn until the desired
value is reached. The value will be displayed in the black area and in a box
below the wheel(4).

28

Image 4.5.1 : NI Function Generator Soft Panel

The desired value can also be entered directly in the box (4) below the wheel.

Below the box is a table (5) where all settings are displayed, regardless which
setting the user is currently editing.

Between the black area and the wheel there are buttons (6)to select the output
function. Possible output functions are sine wave, square wave, triangle, rising
ramp, falling ramp, DC voltage level, noise and a user-defined waveform.

Below the black area displaying the current selected value there are mode
buttons(7) and trigger boxes(8). The mode buttons allow the user to select
standard function output, frequency sweep of standard functions, frequency
shift keying using standard functions and frequency list generation of standard
functions. The trigger boxes allow the user to select a desired trigger.

At the bottom of the Soft Panel a graph (9) of the selected waveform is
displayed.This graph will not change when the user changed frequency,
amplitude, DC offset or phase. It will only change when the user selects a
different waveform. Above the graph the name of the current selected
waveform is displayed.(10)

29

There are a few differences between the original Soft Panel and the Flash Front
Panel. In Flash there is no widget for a wheel, so a custom wheel had to be
implemented. The wheel looks at the position of the mouse pointer compared
to the centre of the wheel and determinates the angle that way. It also counts
how many turns the wheel has made, and together with the angle, this results
in the value the wheel is set to.

Another difference between the original Soft Panel and the Flash Front Panel is
the box below the wheel. The original Soft Panel has a box where the user can
enter values integrated with a drop-down menu. There is no such thing
available in Flash, therefore two standard Flash components have been used to
create the same functionality.

The Flash Front Panel only supports standard waveform generation. The other
options the Soft Panel supports are left out in the Front Panel since this
functionality is currently not supported by the OpenLabs Electronics project.

30

Image 4.5.2 : Flash Function Generator Front Panel

4.6 NI Oscilloscope Front Panel

The NI Oscilloscope Soft Panel is a Soft Panel for an Oscilloscope.

The National Instruments Oscilloscope Soft Panel shows a graph(1) at the top
left. The graph is the result from a measurement performed by the
oscilloscope. At the right and the bottom of the graph there are sliders(2) to
move the graph. At the top right there are configuration options for the
channel(3). There the user can select which channel he desires to set up, and
set the volts per division, channel coupling and channel offset.

Below the channel settings there are the Horizontal settings(4). There the user
can select the time per division and reference position. There is also an option
for Acquisition Type, but there is only one option available.

31

Image 4.6.1 : NI Oscilloscope Soft Panel

At the bottom of the Soft Panel, the user can configure the trigger(5). The user
can select a type, a source, coupling, slope, level and mode. Above the trigger
set-up, next to the horizontal set-up, there is an indicator which shows if the
configured trigger was received. Next to the Channel set-up the user can
enable or disable the displaying of the channels. Through the File → Create
Reference option, the user can save the current waveform as a reference
graph.

The trigger cursor can be enabled through the Utility → Trigger Cursor Option.
This will show a trigger cursor, a line, in the graph at the selected trigger level.

At the left bottom there are buttons(6) with play, pause and stop symbols. The
start button will connect to the hardware and the stop button disconnect. The
pause button will pause the acquisition. That buttons below will show cursors,
perform auto set-up and display the measurement window.

32

Image 4.6.2 : NI Oscilloscope Soft Panel, creating a reference

In the Flash Oscilloscope Front Panel, a few changes where made to match the
requirements by the OpenLabs Electronics project and because of limitations
caused by flash and running on a remote system.

The buttons to connect and disconnect from the hardware have been removed,
since there is no connection to the real oscilloscope. Instead there are buttons
to do a single measurement or continuous measurements. The options to view
the trigger cursor has been added as a button into the interface, since there is
no menu-bar in the flash interface.

The options available at the trigger settings are also different to match the
options provided by the OpenLabs protocol the Flash Front Panels use to
communicate.

The option to display a reference graph has also been left out, since there is no
need for that option in the OpenLabs project.

The look of the Front Panels slightly differs because of the use of Flash Widgets.
Different colours have been chosen to display the graphs to give a better
image to the user.

Image 4.6.3 : Flash Oscilloscope Front Panel

33

Image 4.6.4 : National Instruments Soft Panel Scope Measurements

Another difference between the National Instruments Soft Panel and the Flash
Front Panel is the way cursors and measurements are displayed. The National
Instruments Soft Panel displays them in a separate window. Flash has limited
support for creating windows. Only overlaying windows are supported, but no
windows hosted by the operating system. Because of this limitation it's only
possible to draw windows within the main window. Because of this limitation,
the cursors and measurements within the flash client will be displayed on a
fixed position. When they are activated, the channel and horizontal set-up will
be replaced by the requested option. The number of measurements has also
been limited to three measurements since that is the maximal supported
number of measurements by the protocol the Front Panels use to communicate.

Image 4.6.5 : Flash Front Panel Oscilloscope Measurements

34

Image 4.6.6 : National Instruments Soft Panel Cursors

The cursors information in the Flash Front Panel will be displayed next to the
graph, at the same position as the measurements. The cursors themselves
behave the same as in the Soft Panel. The user can drag the cursors displayed
in the graph to the desired position using a mouse and the values next to the
graph will be updated to match the current cursor position.

Image 4.6.7 : Flash Front Panel Cursors

35

This Front Panel communicates, like all others, using an XML-based protocol.
Since the oscilloscope Front Panel receives a graph, and not a single value like
the other front panels, only the graph data reception will be explained.

The graph is sent as an array of five hundred (500) samples. The samples are
transferred base-64 encoding. The data is base-64 encoded because the XML
protocol does not allow binary data. Decoding the base-64 data will result in
samples stored as a signed eight (8) bit value. This means they will have a
value between -128 and 127. Since the graph area on the screen is only 240
pixels high, this resolution is more than adequate to display a good image.
To convert their values to the real values, a gain and an offset value is sent
along with the samples. Each sample will be multiplied with the gain and the
offset added to the result of the multiplication.

36

5. Proxies

As stated in the previous chapter, the Front Panels communicate using an XML
protocol. The server can communicate in this protocol over a TCP connection.
Some firewalls might block this traffic, so some students prefer to send data
over an HTTP connection in stead.

Since the server does not support HTTP connections, a proxy is required. The
proxy will receive the data over an HTTP connection and re-transmit it over a
TCP connection to the measurement server. The second goal in this project was
to create such a proxy, and which will be discussed in this chapter.

5.1 Direct CGI proxy

The current solution uses a basic proxy implementation in PHP. Since PHP is a
interpreted language, it will be interpreted at run-time. This results in slower
performance then when the proxy was binary code.

To solve this problem, a proxy implementation in C was written. CGI is an
interface that allows an application written in C to be run within a web-server.
This way, the application can be accessed using the HTTP protocol. The web-
server runs on a FreeBSD system. This means the program must use the POSIX-
API. Since the development machine runs Microsoft Windows, the development
was done using CYGWIN, a UNIX-like environment for Microsoft Windows. This
way the code could be developed and tested on the local workstation before
uploading and testing it on the real web-server. It also is a way to ensure the
code is portable to other UNIX-like environments sush as Linux and Solaris, with
no or minor modifications.

5.2 Blocking sockets

The initial version waits for an incoming connection from the Flash Client,
opens a connection to the measurement server, sends the data, and waits for
the response. When all involved systems work correctly, this implementation
works fine. In case there is a problem with the measurement server, the proxy
would wait an infinite time for a response. This behaviour is not desired since in
case the measurement server is down, many instances of the proxy would clog
the web-server, eventually, bringing down the web-server as well, since every
proxy instance would keep a connection open, and there is a limitation on the
maximum number of allowed simultaneous connections.

37

5.3 Time-outs on sockets

It is possible to add time-outs to the send and receive calls on sockets,
eliminating problems that might be caused by non-responding servers.
However, the time-out for connecting is a hard coded value in the Operating
System.

One solution to this problem is to use an alarm. An alarm is a timer that, when
it expires, sends a signal to the program. When the program receives the
signal, it will be interrupted, and execute the signal handler for the received
signal. Using this method, a time-out shorter then the Operating Systems
default can be used. The problem when using this method is the fact the signal
to interrupt the connection can be sent by an other process running on the
server, and there is no way to verify whether it was our own alarm that sent
the signal.

By default, a socket is set to blocking mode. This means that a call will only
return on success, failure or time-out. It's not possible to set a self-defined
connection time-out on blocking sockets. An alternative to blocking sockets are
non-blocking sockets. Non-blocking sockets will return immediately after they
are called. When it returns, it's result might not be known yet. The result can be
obtained by a select call to the socket. This select call does offer the possibility
to set a time-out. This way it is possible to create a self-defined time-out on a
socket connection.

The socket will be switched back to blocking mode after the connection was
successful. Since we can define the time-outs for sending and receiving data,
it's not necessary anymore to use the socket in non-blocking mode.
That would only need more code to wait for the data to be available and adds
no functionality that's required for the proxy.

38

5.4 Using a daemon

The proxy implementation described in the paragraphs above work well, but
has one disadvantage. The proxy will have to connect to the measurement
server for each request. Making a new connection each for every request takes
time, and even though it's a rather short time, when handling many requests, it
might decrease the performance.

In order to solve that problem, a daemon can be used. A daemon is a program
that runs in the background, and has no user interface, also called a service.
The daemon will keep a connection to the measurement server open, and the
CGI-program will send its request to the daemon in stead of directly to the
measurement server. Since the daemon and the proxy run on the same
machine, the time they need to communicate can be neglected.

Apart from the connecting sockets, described in the previous paragraphs, the
daemon also uses listening sockets. The listening socket will wait for an
incoming connection. A listen call to a blocking socket will only return when
there is an incoming connection. This means the program would wait forever if
there is no incoming connection.

39

Image 5.3: Scematic view of a connection using a daemon

Webserver

Daemon

CGI
Flash
Client

Measurement
Server

HTTP

 XML

5.5 Keeping the connection alive

The daemon also has one connection open to the measurement server. During
the waiting for an incoming connection, there will be no activity on this
connection. When there is no activity over a socket connection, it is unsure if
the connection is still alive. It's possible to set a keep-alive option to the socket.
This option will send keep-alive packets,the other end of the connection will
respond to those packets. This way it can be verified the connection is still
alive. However, the time between the connection verifications is hard coded to
two hours. This is a rather big timespan, and we would like to check the
connection status more frequently.

To be able to check the status more frequently, the protocol has implemented a
heart-beat. To send this heart-beat we need to interrupt the listen call to the
socket. This can be done using an alarm, but the use of a signal has some
unwanted side effects, as described in previous paragraph. Other processes
can send this signal as well, and, in the case of the heart-beat, this may result
in flooding the measurement server with heart-beat packets.

Instead, we can use non-blocking sockets here too. After setting the socket in
non-blocking mode, a listen call is performed on the socket. The listen call will
return immediately. Using the select call with a time-out, it's possible to wait for
an incoming connection that will be interrupted when the time-out has expired.
The status code the listen call returns indicated if there was an incoming
connection or a time-out. In case there was a time-out, the heart beat will be
sent to the server. The server will reply to the heart-beat, and the waiting for
an incoming connection will be resumed.

This way it's possible to ensure that the connection to the measurement server
is still alive, without risking the server to be flooded by external processes
running on the same machine.

40

5.6 UNIX sockets

The communication between the proxy and the daemon runs over a TCP
connection to the local host. Since the software runs on a FreeBSD machine, it's
also possible to use UNIX sockets.

Unlike TCP sockets, UNIX sockets are file based. In a traditional UNIX
environment everything is a file. Because UNIX sockets are file-based, an
advantage is the possibility to limit the access to the socket. UNIX files can
have access right depending on the user who is running the task. On UNIX
platforms, a user does not necessarily mean a real person. One can create a
UNIX user for a specific application, and set rights to files so that file can only
be accessed by the specific application.

Apart from the advantage of controlling the access to the socket, UNIX sockets
guarantee both ends of the socket run on the same machine. Therefore it's not
necessarily to perform any checksum calculations or apply routing information.
Fewer operations have to be performed on the data before it's sent, so UNIX
sockets provide better performance than TCP sockets.

The implementation of the proxy and daemon only need minor modifications to
use UNIX sockets. The final implementation of the daemon/proxy
implementation supports both TCP and UNIX sockets.

41

6. Direct Instrument Control

The third objective was to create a way of directly controlling the instruments
using the IVI API. This was also the biggest assignment. This chapter discusses
the different aspects of the controlling the instruments directly.

6.1 IVI API

There exist an API to directly control measurement instruments. This API is
created by the IVI Foundation and could be used to control any measurement
equipment from any manufacturer that supplies IVI drivers for their products.
This way, a program that uses the IVI API is not dependant on any specific
hardware.

The first task within this assignment was to analyse the API and to see if it is
possible to set an output signal or fetch a measurement. A simple test
application was created for this purpose.

The API is simple,but there were a few unclarities that had to be solved. To use
a driver, it shuld know which hardware it should use. The driver is to be told
during the initialisation, but the API documentation does not specify how the
equipment has to be identified. It seems this identification is manufacturer
specific.

The hardware used during development differs from the hardware that's used
in the actual OpenLabs Electronics Laboratory. The development system is
using an older PXI box that has been used in a previous version of the
OpenLabs Electronics laboratory. The power supply is connected through a GPIB
interface in stead of PXI, while the Power Supply in the actual OpenLabs
Electronics Laboratory is connected using PXI. The different interface is
irrelevant to the development since the software interface is the same.

42

6.2 Hardware Identification

During the initialisation of the driver, the hardware has to be identified. The
first equipment to be implemented was the power supply. This device is
connected through the GPIB interface. The identification of the power supply is
“GPIB0::5::INSTR”. This is interpreted as Instrument at GPIB bus 0, address
number 5. This address appears in the “Measurement and Automation
Explorer” software supplied by National Instruments.

43

Image 6.2.1: The Power Supply in the Measurement and Automation Explorer

After the power supply was implemented, the multimeter was next to
implement. The multimeter is connected using the PXI interface. This device
appears as “PXI3::15::INSTR” in the “Measurement and Automation Explorer”

Yet, trying to initialise the driver using this address resulted in a “hardware not
found” error. It turns out, the drivers from National Instruments require a
different addressing method. The correct value to initialise the National
Instruments driver turns out to be it's DAQ address, which can be found in the
Measurement and Automation Explorer too. (Image 6.2.3) The driver initialised
correctly when using address “DAQ::2” in stead.

44

Image 6.2.2: The Multimeter in the Measurement and Automation Explorer, yet address is not working

The correct addressing for National Instruments equipment is also visible in the
National Instruments Soft Panels.

After the addressing problem was solved, it was easy to get this and the other
drivers from NI working

45

Image 6.2.3: The Multimeter in the Measurement and Automation Explorer, as DAQ device

Image 6.2.3: The Soft Panel showing the DAQ::2 address

6.3 Loading the driver

The first implementations of the interface with the driver loaded the specific
driver for the device directly. This driver implements the IVI API, but only
supports one specific device. This would result in a program that only supports
one specific type of hardware.

It is possible to load a driver for a specific type of hardware through a main
driver, which only implements the API but does not support any hardware. This
feature obtains pointers to all the IVI functions that exist in the specific driver.
Every function pointer has to be obtained one by one and results in a lot of
extra code in the program. Therefore this solution is not the desired solution.

Fortunately, National Instruments offers another option to load a specific driver
from a main IVI driver. To use this option, a number of settings need to be
made within their Measurement and Automation software.

Using the Measurement and Automation software, a user defined identification
for the measurement equipment can be defined. The main IVI driver can be
initialised using this identification.

6.4 From C to C++

After the basic driver handling was working, the code should be integrated into
the measurement server. Since the measurement server is written in C++, so
should the code that is to be integrated. Therefore a class for each driver had
to be created.

Each class should initialise the measurement equipment it's going to be used
with the equipment's identification, perform equipment set-up and fetch the
resulting data. After use the equipment should be unloaded correctly.

It's possible to send the initialisation parameters to the constructor of the class,
however, a constructor cannot return a value, therefore it's hard to indicate
possible errors. In stead, an initialisation function is used, that's to be called
after the creation of the class. This function can return a value and so the
status can be checked easier.

46

All measurement equipment, with exception of the multimeter, support
multiple channels. Each channel works independent. For example a power
supply can generate different voltages on each of it's output channels.

6.5 Power Supply Class

Upon initialisation of the Power Supply Class, a Power Supply Driver will be
loaded. If the driver is loaded successfully, the channels will be requested. For
each channel, a channel object will be created. Within the IVI-API channels are
identified by a string, which usually contains a number. Since we want to
identify the channels by their output range (+6 Volt, +20 Volt or -20 Volt) the
driver will request the maximal output voltage from each channel and assign
the correct range to each channel. This value will also be stored within the
channel objects. This way, it is possible to address each channel by it's type,
not depending on it's name used internally by the IVI driver.

For each channel it is possible to set an output voltage and a maximal output
current within the limits supported by the equipment. It's also possible to
request the current output voltage and current and to check the current
limitation has been reached or not.

6.6 Multimeter Class

There is only once function available to perform a measurement. This function
accepts the desired measurement, measurement range and resolution as
parameters. Supported measurement by the IVI standard can be seen in the IVI
API Documentation [IVIAPI] Chapter 4.2 page 21. Note that not all of there
measurements have to be supported by the measurement equipment. The
driver will generate an error code when an unsupported measurement is
requested. For example, the National Instruments multimeter does not support
a temperature measurement.

National Instrument has added an extension to their driver to also support AC
volts DC coupled, Diode measurement, Waveform Voltage, Waveform Current,
Capacitance and Inductance. Support for these extensions can be enabled and
disabled during compilation of the code.

47

6.7 Function Generator Class

A function generator can support multiple channels, and therefore channels
must be requested during initialisation, even though the used function
generator only has one channel.

The function generator class has a few functions to set up the output signal.
The properties of the output signal that can be defined are the Amplitude, DC
Offset, Duty Cycle, Frequency, Output Impedance and the Waveform. The
waveform can be a sine wave, a square wave, a triangle, a rising ramp, a
falling ramp, or a DC Voltage. National Instruments also added some
extensions, and added support for noise and user defined waveforms.

6.8 Oscilloscope Class

The oscilloscope has two channels, and during initialisation their names will be
requested.

To obtain a waveform from the oscilloscope takes two steps; the configuration
and the acquisition. The configuration consists of two parts, the general
configuration and a per channel configuration.

The general configuration takes the following parameters: the time the
acquisition is supposed to take, the number of samples the result will be, and
the time the acquisition is supposed to start relative to the trigger. The trigger
has to be configured with the trigger coupling, trigger level and trigger slope.

The channel configuration takes the following parameters: range, offset,
channel coupling, probe attenuation. The channel will also be configured with
the input impedance and a maximum frequency. When the maximum
frequency parameter is set, it will apply a low-pass filter to the input signal.

48

After configuration the actual acquisition of the channel can be initialised.
There are several ways of acquiring and obtaining a waveform from a channel.
When the ReadWaveForm function is called, it will acquire the waveforms from
both channels, but return the data from the channel it was called on. Since the
ReadWaveForm function acquired the waveform from the other channel as well,
it's not necessary to call it again. This would only waste the time it takes to do
another acquisition. In stead the FetchWaveForm function is called on the other
channel to obtain the waveform for the other channel. This way the waveform
for both channels are obtained with only one acquisition.

Apart from obtaining waveform from the channels, the oscilloscope also has the
ability to perform measurements on the signal. The measurement function is
called with the requested measurement. Possible measurements can be seen in
the IVI API Documentation [IVIAPI] Chapter 4.1, page 122 and following.

The measurement function is called with one of these measurements and the
channel to measure on as parameters and will return it's value.

The OpenLabs Electronics software requires a feature that's not supported by
IVI, therefore this feature has to be implemented elsewhere.

This feature is auto configuration. This means setting a suitable time and
voltage per division depending on the signals offered on the oscilloscope
channels.

In order to determine the values that are best suitable for the offered signals,
the AutoSetup function will perform measurements on the signal to obtain the
minimal and maximal voltage of the signal. Using these values the voltage per
division and offset voltage will be determined. When the voltage levels have
been determined another measurement will be performed to obtain the period
of the signal. Using the result from this measurement the time per division will
be determined.

49

6.9 Different Hardware

The development machine that was used to develop the IVI Driver classes
contains hardware that differs from the machine currently in use for the
OpenLabs Electronics Project. The used hardware is shown in the table below.

Hardware type Development hardware Production hardware
Power supply Agilent E3631A NI-4110
Multimeter NI-4060 NI-4072
Function Generator NI-5401 NI-5402
Oscilloscope NI-5112 NI-5112

In theory, using different hardware should not cause a problem, since the
software interface is the same. In practice, there were some problems.

During the initialisation of the power supply, the maximal output voltage per
channel is requested per channel. While requesting the maximal voltage, a
current should be included in the request. On the Agilent power supply the
correct value was returned when this parameters was set to 0 Ampère. On the
National Instruments power supply this request would result in a return value of
0 Volts. A solution to this problem is to request the maximal current first, with a
parameter of 0 Volts, however on the Agilent power supply, this would result in
an out-of-range error in the return value. To make the initialisation work
correctly on both power supplies, the maximal current is requested and divided
by two. Using this current value as parameter when requesting the maximal
voltage returns the correct result for both power supplies.

The NI-5401 Function Generator allows the output signal to be changed when
the output signal is still being generated. Changing the output signal when the
output signal is still being generated is allowed according the IVI specifications.
However, when using the NI-5402 Function Generator, trying to change the
output signal when a signal is still being generated resulted in an error being
returned saying it is not allowed to change the output signal when the signal is
still being generated. The solution is to stop the generation before changing
the signal. Stopping the generation before changing the signal causes no
problems for the NI-5401 Function Generator.

50

Even though the same oscilloscope is used in both systems, their behaviour is
different. Possibly through different driver version. When no trigger was
received on the development machine the oscilloscope would configure a
suitable trigger value itself, however on the running production machine an
error would occur. The oscilloscope driver class has to handle both cases
correctly. When the driver returns a waveform, it will validate the channel
against the configured trigger level. Depending on the requested trigger mode,
appropriate action will be taken. If the trigger mode was set to 'normal' the
signal will be abandoned, in other cases the signal will be returned. When a no-
trigger-error is received, and the trigger mode was not set to 'normal', a
measurement will be performed on the signal to determine a valid trigger level
and the signal acquisition will be requested again. Besides the 'normal' trigger
mode it's possible to have an 'auto' and an 'auto-level' trigger mode. Both will
return the signal, even when the trigger is invalid. The difference is that the
'auto-level' will also return a suitable trigger level for the current signal, while
the 'auto' trigger will only return the signal.

6.10 The Matrix

For the LabView server to be replaced by code that interfaces with the
hardware directly, the Matrix has also to be controlled from the measurement
server.

The Matrix has an USB interface and uses a simple string based protocol. In
order to communicate with the Matrix, libusb is used. Libusb provides a simple
interface to USB devices.

Like the measurement equipment, the code to communicate with the matrix
has also to be written in the form of a C++ Class.

Next to the initialisation the class has a function to send and receive data from
the matrix. The current matrix only supports sending data to it. A function to
receive data has been implemented for future use.

The matrix consists of a few stacked boards, which either are connected to
measurement equipment or contain components. The strings sent to the matrix
specify which relays are to be opened and closed on which boards. Opening
and closing relays will create the electronic circuit the student has sent to the
server to measure on.

51

In order to decide which relays should be opened and closed, a list of the
components available on the boards is supplied to the server. This data is
processed elsewhere in the server and will provide a list with relays to open
and close to the module.

With the list of relays, it will create the commands that are to be sent to the
matrix. During the circuit build-up, its relays will be opened and closed per
card. An incomplete circuit will contain incorrect connections. When power is
available in the circuit this can lead to a short circuit, possibility damaging the
equipment. Therefore it's important to guarantee the circuit is not powered
during set-up. To guarantee the circuit is not powered during set-up, all
instruments will be disconnected during set-up. They will only be attached to
the circuit after it's completed. Since the component cards have an address
below 16 and the equipment cards have an address above 16, setting them up
in increasing order guarantees then equipment to be attached after the
component cards.

52

7. Conclusions

The additional flash Front Panels that have been created offer students a choice
on how to operate the OpenLabs Electronics interface. The flash modules are
based upon the National Instruments Soft Panels. The Soft Panels are designed
to be used on a computer screen, therefore the Front Panels based upon these
Soft Panels are easier to operate then the original Front Panels based upon
equipment that is not computer based.

The new CGI based proxy has a performance advantage over the older PHP
based proxy, and when this proxy is used, it will increase the overall
performance of the OpenLabs Electronics system.

The integrated IVI and USB drivers into the measurement server will make the
need of a LabView server obsolete. Controlling the equipment directly from the
measurement server results in a performance advantage, and removes the
dependency of LabView. Less factors the system depends on will result in a
more reliable system, and it reduces the cost for running the system since a
LabView license is not required.

53

Evaluation

The time I've spent in Sweden doing my internship at Blekinge Tekniksa
Högskola has been a great time. During my internship I've met some new
technologies I hadn't used before.

During my internship an Agile software development has been used. I've liked
this way of working since this development method doesn't have much
bureaucracy interfering with creativity and slowing down development.

During my first assignment I've learned and written software using ActionScript
3.0 in Adobe Flash CS3. This is a coding language and environment I haven't
used before my internship. I've learned about some possibilities of this
development environment and language.

My second assignment has given me more experience with BSD Socket
programming in C. Before my internship I hadn't coded for a FreeBSD system
before. Although it's a POSIX compatible system, there are some differences
with for example Linux when it comes to socket programming. I've also been
using some more advances features of sockets then I've done before my
internship. I've learned about some features sockets offer I didn't know of
before.

My third and last assignment has given me more experience with Microsoft
Visual Studio Express 2008. I hadn't used this development environment before
my internship. Working on the project provided me with more experience in the
programming language C++ and the use of libraries. I've also learned about
the IVI API to control measurement equipment. The IVI API is an API to control
measurement instruments. Even though it's a standard, there are
implementation differences between different drivers.

54

List of References

Books:

UNIX Network Programming, third edition:
ISBN: 0-13-141155-1

Websites:

GNU C Library Documentation:
http://www.aquaphoenix.com/ref/gnu_c_library

IVI API Documentation [IVIAPI]:
http://ivifoundation.org/specifications/default.aspx

OpenLabs Client Protocol documentation
http://svn.openlabs.bth.se/trac/measureserver/wiki/ClientProtocol

OpenLabs Equipment Protocol Documentation:
http://svn.openlabs.bth.se/trac/equipmentserver/browser/branches/usbmatrix/Docs/Protv4.pdf

Virtual Instrument Systems in Reality (VISIR):
http://www.bth.se/tek/asb/research/visir

Delivered source code:

Since all code produced in this project is released under the GPL License, the
code is public available. The code can be browsed using a trac interface using
the links below.

CGI Proxy and Daemon:
http://svn.openlabs.bth.se/trac/openlabsweb/browser/trunk/sites/electronics/cgi_proxy

Flash Front End modelled after National Instruments Soft Panels:
http://svn.openlabs.bth.se/trac/flash/browser/trunk/NI_DCPower
http://svn.openlabs.bth.se/trac/flash/browser/trunk/NI_DMM
http://svn.openlabs.bth.se/trac/flash/browser/trunk/NI_FGEN
http://svn.openlabs.bth.se/trac/flash/browser/trunk/NI_OSC

IVI & USB control code for the measurement server:
http://svn.openlabs.bth.se/trac/measureserver/browser/trunk/src/ivicontrol

55

http://www.aquaphoenix.com/ref/gnu_c_library
http://svn.openlabs.bth.se/trac/measureserver/browser/trunk/src/ivicontrol
http://svn.openlabs.bth.se/trac/flash/browser/trunk/NI_OSC
http://svn.openlabs.bth.se/trac/flash/browser/trunk/NI_FGEN
http://svn.openlabs.bth.se/trac/flash/browser/trunk/NI_DMM
http://svn.openlabs.bth.se/trac/flash/browser/trunk/NI_DCPower
http://svn.openlabs.bth.se/trac/openlabsweb/browser/trunk/sites/electronics/cgi_proxy
http://www.bth.se/tek/asb/research/visir
http://svn.openlabs.bth.se/trac/equipmentserver/browser/branches/usbmatrix/Docs/Protv4.pdf
http://svn.openlabs.bth.se/trac/measureserver/wiki/ClientProtocol
http://ivifoundation.org/specifications/default.aspx

OpenLabs Electronics
A Remote Electronics Laboratory

Project Plan

Name André van Schoubroeck
Date 18 November 2008

Version 0.3

Index
1. Introduction to the Project...3
2. Project Statements..4

2.1 Formal Client...4
2.2 Project Leader...4
2.3 Initial Situation ...4
2.4 Project Justification...5
2.5 Project Product..5
2.6 Project deliverables and non-deliverables ..6
2.7 Project constraints ...6
2.8 Project risks ..6

3. Planning...7
3.1 Agile Software Development..7

4. Communication Plan..8

1. Introduction to the Project

The OpenLabs project is an umbrella project for several projects that share the
similar goals. The OpenLabs project is a project for distance students that
allows them to do experiments over the internet. At the moment the project
within the OpenLabs project include Antenna theory, Electronics, Security and
Vibration Analysis.
During my internship I will be a part of the electronics laboratory team. I will
investigate new possible features and methods to improve the laboratories. For
example create alternative front panels in Flash, and create new ways of
accessing the measurement hardware.
The electronics lab consists of three parts: an interface to the hardware written
in LabView, a measurement server written in C++, and a front panel written in
ActionScript 3 (The language Adobe Flash uses).

Page 3 / 9

OpenLabs

2. Project Statements

2.1 Formal Client
The OpenLabs project is a project at Blekinge Tekniska Högskola, therefore BTH
is the formal client.

2.2 Project Leader
The project leader is Ingvar Gustavsson, and the supervisor is Johan
Zackrisson.

2.3 Initial Situation
The initial situation of the OpenLabs electronics project is a running project
that's currently serving many students with measurements.
The project contains three components. An equipment server, written in
LabView. It communicates with the measurement equipment. A measurement
server, written in C++. This server manages the measurements and requests
the measurements at the equipment server. The measurement server
evaluated the circuit and makes sure it cannot do any harm to the school's
equipment before sending it to the equipment server. The final part is a flash
client. This is the part the student sees, it is written in ActionScript 3.0 / Flash
CS3 and this piece of software allows the student to compose an electronics
circuit on the screen, attach measurement devices to it and perform a
measurement on the circuit.

Page 4 / 9

2.4 Project Justification
The OpenLabs electronics project is currently serving many students with
measurements. Students on a distance learning course, who might be used to
different measurement equipment. For this reason, I will create additional front
panels to give the students a choice which front panel they would like to use. A
different front panel would not change the measurement results, but the
controls and results will be presented in a different way.

The option to have different front end available is to make the use of the
system easier for the student, since he can choose for an interface he has used
before, and also when the student operated the real measurement equipment
he already knows how to operate it since it works the same as the on-line
version.

The front panels I will create are front panels that look like the soft panels used
by National Instruments. The choice to create front panels that look like the soft
panels from National Instruments is also because the used measurement
equipment is from National Instruments and showing their name is also a way
of promoting them, since National Instruments is supporting the project.

I will implement a new proxy written in C. This proxy will run on a FreeBSD
machine. In order to write this proxy, the possibilities of POSIX sockets will have
to be explored and applied in this proxy.

I will also explore new ways to communicate with the measurement equipment.
The current solution uses LabView to communicate with the equipment, but it
would be interesting to investigate the possibilities to access the equipment in
C++. If that can be done, it would be possible to integrate the equipment and
measurement servers into one program.

Page 5 / 9

OpenLabs

2.5 Project Product
During my internship I will create front panels looking similar to the soft panels
by National Instruments. These will be written in Flash (ActionScript 3). If
necessary I will extend the measurement server (written in C++) to support
the features the National Instruments soft panels support and are desired to be
supported by the front panels.
The Measurement Instruments I will work at are:

• Power Supply
• Multimeter
• Oscilloscope
• Function Generator.

I will create a proxy implementation written in C to replace the current proxy
written in PHP. This will be done because C offers better performance then PHP.
I will also investigate the possibilities to control the measurement equipment
directly from C or C++. The measurement equipment uses an industry
standard API: IVI. IVI is short for “Interchangeable Virtual Instrument”, and is
supported by almost all measurement devices.

Page 6 / 9

2.6 Project deliverables and non-deliverables

The deliverables in this project will be, among others, new front panels for the
electronics labs web (Flash) interface.
Information and solution about the use of IVI drivers directly from C or C++
code, without using LabView. A prototype implementation will be provided and
a prototype of a measurement server with integrated with the IVI driver classes
I will create.
I will also provide a guide how to configure a system to be used with this
software in combination with different types of measurement equipment (GPIB
or PXI) .
All source code generated within this project will be released under a GPL
license.
An internship report and presentation will be provided according to the
requirements of Fontys University Of Applied Sciences requires for a internship
report. The report and presentation will be given to both Fontys University of
Applied Sciences and Blekinge Institute of Technology. Blekinge Tekniska
Högskola will apply the same requirements as Fontys University of Applied
Sciences.

2.7 Project constraints

BTH will have to provide me with a computer supplied with all software needed
to preform my activities. This will include the Microsoft Windows XP operating
system, the Microsoft Windows Visual Studio 2008 Express IDE and compiler,
Adobe Flash CS3, National Instruments Soft Panels, drivers and the
Measurement and Automation Explorer.
The computer will need to be equipped with a PXI and a GPIB interface to
communicate with the measurement equipment, and an internet connection is
desired to supply information.
The required hardware will need to be provided, including a National
Instruments PXI box with a PXI Multimeter, a PXI Power Supply, a PXI Function
Generator and a PXI Oscilloscope. Alternative hardware with a GPIB interface
can be used as well.

Page 7 / 9

OpenLabs

2.8 Project risks

A possible risk during this project is possible data loss. The minimize the risk of
data loss, source code will be submitted to an subversion (svn) server. This way
the code will always be on-line and it will always be possible to revert to an
older version of the code in case it stops working.

3. Development Method

During this project an agile software development methodology will be used.
Therefore there will be no traditional long-term planning.
Agile software development is not a methodology, but rather a family of
methodologies that share many similarities. Agile software development is a
method of software development best suitable for small developing teams.
In agile software development the software will be developed in small pieces
with minimal planning. Such a piece is called an iteration, and it usually takes a
few weeks.
After each iteration the result will be reviewed and the priorities will be re-
evaluated. Because of this agile software development is a flexible way of
developing software. It's easy to adapt to changes in the requirements.
Agile software development emphasizes face-to-face communication over
written documents. Progress is mainly being monitored by delivered working
pieces of software. A working piece of software will be delivered frequently.

Page 8 / 9

4. Communication Plan

As stated in the previous chapter, during we will use agile software
development. This methodology of software development requires frequent
face-to-face communication with the involved people.
Apart from the daily contact with the other team members I will make a weekly
report of my activities the past week, and an overview of my planned activities
the coming week and email it to my teacher at Fontys (Dick van Schenk Brill).

Page 9 / 9

A FLEXIBLE ELECTRONICS LABORATORY WITH LOCAL AND REMOTE WORKBENCHES IN A GRID

 1

A Flexible Electronics Laboratory with Local and
Remote Workbenches in a Grid

I Gustavsson1, J. Zackrisson1, K. Nilsson1, J. Garcia-Zubia2, L. Håkansson1, I. Claesson1, and T. Lagö3
1 Blekinge Institute of Technology/Signal Processing, Ronneby, Sweden

2 University of Deusto/Faculty of Engineering, Bilbao, Spain
3 Axiom EduTech AB, Falkenberg, Sweden

Abstract— The Signal Processing Department (ASB) at
Blekinge Institute of Technology (BTH) has created two
online lab workbenches; one for electrical experiments and
one for mechanical vibration experiments, mimicking and
supplementing workbenches in traditional laboratories. For
several years now, the workbenches have been used
concurrently with on-site ones in regular, supervised lab
sessions. The students are encouraged to use them on a 24/7
basis for example, in preparation for supervised sessions.
The electronic workbench can be used simultaneously by
many students. The aim of a project known as VISIR
(Virtual Systems in Reality) founded by ASB at the end of
2006, is to disseminate the online lab workbenches using
open source technologies. The goal is to create a template
for a grid laboratory where the nodes are workbenches for
electrical experiments, located at different universities. This
paper focuses on standards, pedagogical aspects, and
measurement procedure requirements.

Index Terms—Electronics, Grid, Remote labs, Workbench.

I. INTRODUCTION
For centuries, scientists have performed physical

experiments in order to verify and test theories, and to
create proper mathematical models, to describe reality
well enough. Such experiments are the only way to
“communicate” with nature and to learn its principles.
Only recently has it become evident that mankind must
live in symbiosis with nature and focus on sustainability
and understanding. Thus, the demand for experimenters
will increase. However, during recent decades, the amount
of hands-on laboratory work, for example, in engineering
education has been reduced. The prime cause is clearly
due to the task of handling the dramatically increased
number of students, whilst staff and funding resources
have scarcely changed [1].

Reducing the number of lab sessions is easy because
laboratory work is seldom evaluated, and the cost
reduction obtained is often considerable. However, for
example, ABET (Accreditation Board for Engineering and
Technology) in the USA has demonstrated that learning
objectives for laboratory work must exist and
subsequently, be evaluated [2, 3]. Thus, the amount of
hands-on laboratory work in a course must be correlated
to its learning objectives. Unfortunately, a substantial rise
in base funding resources is unlikely to manifest itself in a
real life environment.

It is, of course, fundamental for students to understand
theories and mathematical models. Appropriate and low
cost tools are often hand calculations and simulations. The

use of computer simulations has increased very much in
engineering education in the last few decades however, to
properly assess differences between mathematical models
and the real world, experiments are clearly indispensable
[4, 5]. On the other hand, traditional laboratories have
limited accessibility and high running costs.

Nowadays, students want extended accessibility to
learning resources and increased freedom to organize their
learning activities, which is also one of the main
objectives of the Bologna Process. From a technological
perspective, such flexible education corresponds to an
adequate exploitation of information, communication
devices and infrastructures, especially the Internet. Today,
many academic institutions offer a variety of web-based
experimentation environments, so called remote
laboratories, that support remotely operated physical
experiments [6-9]. This is one way to compensate for the
reduction of lab sessions with face-to-face supervision.

The remote, or online laboratories around the world, are
used in a variety of disciplines. However, the wide range
of user interfaces is a problem for students and teachers.
Efforts are being made to address this situation. The iLabs
project at Massachusetts Institute of Technology in the
USA, for example, has developed a suite of software tools
that facilitates online complex laboratory experiments, and
provides an infrastructure for user management [10]. A
somewhat different approach would be to create a grid
laboratory where the nodes are online lab workbenches,
distributed among a number of universities or other
organizations. In such a laboratory, intended for the same
type of experiments, it would be possible to organize
supervised lab sessions with as many students, or student
teams working concurrently as are optimal, for one
instructor. Such supervised lab sessions could, for
example, take place in a traditional laboratory where some
students could use the local lab workbenches and others
could perform the experiments remotely, on distant grid
nodes. Then it should be possible for each university to
offer more time in the laboratory for its students.

In 1999, ASB began a remote laboratory project.
Today, ASB has two online lab workbenches; one for
electrical experiments and one for mechanical vibration
experiments, based on the BTH Open Laboratory concept
[11]. The concept is about providing new possibilities for
students to do laboratory work and become experimenters,
by adding online lab workbenches to traditional
instructional laboratories to make them more accessible
for students, whether they are on campus or mainly off
campus. These workbenches are equipped with a unique
interface enabling students to recognize, on their own

A FLEXIBLE ELECTRONICS LABORATORY WITH LOCAL AND REMOTE WORKBENCHES IN A GRID

 2

Figure 1. Workbench in a local electronics laboratory at BTH

computer screen, the instruments and other equipment that
most of them have previously used in the local laboratory.

At the end of 2006, ASB started the VISIR project
together with National Instruments in the USA and Axiom
EduTech in Sweden, to disseminate the online laboratories
at BTH using open source technologies. Axiom EduTech
is a supplier of education, technical software, and
engineering services for noise and vibration analysis. The
project is financially supported by BTH and by
VINNOVA (Swedish Governmental Agency for
Innovation Systems).

What type of instructional laboratory would be feasible
for creating a template for a grid laboratory? There are
reasons for starting with a grid laboratory for electrical
experiments:
• There are electronics laboratories at most universities

around the world containing the same equipment,
(oscilloscopes, waveform generators, multi-meters,
power supplies, and solderless breadboards) although
models and manufacturers may vary. Such
laboratories are already in a way, a de facto standard.

• There are standards defining the functionality for
instruments common in an electronics laboratory.
The IVI Foundation is a group of end user
companies, system integrators, and instrument
vendors, working together defining standard
instrument programming interfaces [12].

• Today, BTH has an online electronics laboratory
running in regular education where the software
produced is released as open source code [13].

This template can be used for designing grid
laboratories for other areas of interest. ASB has identified
a laboratory for mechanical vibration experiments as a
strategic and appropriate candidate, because those lab
workbenches are very expensive and mathematical models
generally provide a too simplified picture of the reality,
even for introductory courses. Measured vibration signals
frequently exhibit complicated properties compared to the
vibration signal models frequently utilized in education.
Selecting appropriate estimators and estimator settings,
enabling extraction of different accurate estimates of
vibration quantities from measured vibration signals,
generally provides a substantial challenge for the
inexperienced person. Moreover, the dynamic properties
of a mathematical model of a structure and the actual
dynamic properties of said structure, generally differ. Of
significance; an online mechanical vibration laboratory
provides the opportunity for engineering students to
access the practical and theoretical knowledge
advancement in experimental vibration analysis that is
highly attractive for the industry.

II. THE OPEN ELECTRONICS LAB AT BTH
 An experiment is a set of actions and observations,

performed in the context of solving a particular problem.
Experiments are cornerstones in the empirical approach to
acquire a deeper knowledge of the physical world but also
an important approach to verify that a model is accurate
enough. The experimenter sets up, and operates, the
experiment with his/her hands and/or with actuators. As
an example, a lab workbench in an instructional laboratory
for low-frequency analog electronics at BTH is shown in

Fig. 1. The student wires a test circuit on the breadboard
using his/her fingers and uses instruments to measure
what s/he cannot perceive directly with human senses as,
for example, the electrical current. Experiments that are
possible to perform in this environment are mainly limited
by the set of components provided by the instructor.

In instructional laboratories at most universities, there
are a number of lab workbenches where the same number
of students, or usually a pair of students, perform
experiments supervised by an instructor. The students are
permitted to be in the laboratories only during lab sessions
when an instructor is present. The number of lab
workbenches in a laboratory is usually selected,
considering how many students an instructor can
supervise if a workbench is not too expensive. Typically,
electronics instructional laboratories are equipped with
eight identical workbenches. Fewer lab workbenches
mean more teaching hours per course but less investment.
It is a pedagogical advantage if the lab workbenches are
identical because the students can then perform the same
number of experiments in each session and in the correct
order as required by the syllabus. Alternatively, it implies
larger investments i.e. more duplicates of each instrument
[9].

In electronics, it is possible to perform the same
experiment in different time scales by selecting the values
of the components controlling the time constants properly.
This “feature” is used in the online electronics laboratory
at BTH containing only one workbench to allow
simultaneous access by time sharing. A single workbench
can replace a whole laboratory with many workbenches.
The maximum duration of a single experiment i.e. circuit
creation and measurement procedure is currently set to 0.1
second to get a reasonable response time even with a large
number of experimenters. The experiments are set up
locally in each client computer. Only by pressing a
Perform Experiment button the experimenter sends a
message containing a description of the desired circuit and
the instrument settings to the workbench (server). If the
workbench is not occupied, the experiment procedure is
performed in a predefined order, and the result or an error

A FLEXIBLE ELECTRONICS LABORATORY WITH LOCAL AND REMOTE WORKBENCHES IN A GRID

 3

Figure 2. Equipment Server

Figure 3. Screen dump showing the oscilloscope

message is returned to the requesting client computer.
Otherwise, the request is queued.

The online lab workbench at BTH is different when
compared with the traditional one in Fig.1. It is, of course,
not possible for students to manipulate the components
and to remotely wire a desired circuit on the breadboard
using their fingers. A telemanipulator e.g. a relay
switching matrix must be used. The instruments are plug-
in boards installed in a PXI chassis connected to a host
computer as shown in Fig. 2. This chassis and its contents
are manufactured by National Instruments. The
corresponding virtual front panels are photographs of the
front panels of the instruments in Fig. 1. As an example, a
screen-dump, displaying the oscilloscope, is shown in Fig.
3. The card stack on the top of the PXI chassis in Fig. 2 is
the switching matrix. A subset of the components a
teacher or the laboratory staff has installed in the matrix is
displayed on the client computer screen adjacent to a
virtual breadboard where the student wires the desired
circuit to control the matrix. It is possible to assemble a
circuit with up to 16 nodes by engaging a number of
relays in the matrix. Apart from a controller board, the
card stack contains two types of board: one with
component sockets and one for connecting instruments.
The nodes passing all boards can be connected to sources,
instruments, and/or components installed in the sockets
via relay switches. The online electronics laboratory at
BTH is used in three ways:
• In supervised lab sessions in the local laboratory

where students can select if they want to perform the
experiments locally or remotely. However, in the
first lab session, it is mandatory to do the wiring on
the real breadboard.

• In supervised lab sessions for distance learning
courses, where the students are scattered all over the
country. Remote desktop software and MS
Messenger has been used to communicate between
the students themselves and between the students and
the instructor. More advanced means of
communication will be adopted [14].

• Students can prepare supervised lab sessions and
perform the experiments at home, knowing that the
equipment in the traditional laboratory looks and
behaves in a similar fashion. They can also repeat
experiments afterwards! Inexperienced or less
confident students requiring more time, appreciate

these possibilities. A student wanting, for example,
to master the oscilloscope, can practice in the privacy
of his/her own home.

So far, the research has been focused on recreating as
accurately as possible, the laboratory experience for a
remotely based learner.

III. THE VISIR PROJECT
The aim of the VISIR project is to form a group of

cooperating universities and other organizations, a VISIR
Consortium, creating/modifying software modules for
online laboratories using open source technologies and
setting up online lab workbenches [15]. A number of such
scattered lab workbenches may be nodes in a grid
laboratory. The VISIR Initiative is not confined to
electronics laboratories but the VISIR project has started
with lab workbenches for electrical experiments, since this
is an easy and straightforward application to demonstrate
the powerful concept. So far, the following universities are
participating, or are interested in participating in the
project; FH Campus Wien in Austria, University of
Deusto in Spain, University of Genoa in Italy, Princess
Sumaya University for Technology in Jordan, Carinthia
University of Applied Sciences in Austria, Gunadarma
University in Indonesia, UNINOVA (Institute for the
Development of New Technologies) in Portugal, and ISEP
(Instituto Superior de Engenahria do Porto) in Portugal.
The first two universities have already implemented
online workbenches using the currently released software.
BTH will act as a hub for the development and maintain a
server from which the current version of the software can
be downloaded.

The overall goal of the VISIR project is aimed at
increasing access to experimental equipment in many
areas for students, without raising the running cost per
student significantly for the universities. The means, are
shared online laboratories created by universities in
cooperation and supported by instrument vendors. Sharing
of laboratories may lead to sharing of course material. The
ultimate goal of the research at BTH is ubiquitous
physical experimental resources, accessible 24/7 for
everyone, gender neutral, as a means of inspiring and
encouraging children, young people and others to study
engineering and become good professionals or to be used
as a means of life-long learning.

A FLEXIBLE ELECTRONICS LABORATORY WITH LOCAL AND REMOTE WORKBENCHES IN A GRID

 4

Figure 5. Wring service

Lab client
routine

Instrument
Control
routine

Internet

Lab client computer Grid node

Virtual Front Panel Oscilloscope Board
Figure 4. Oscilloscope service

IV. A GRID LABORATORY FOR ELECTRICAL
EXPERIMENTS

Grid computing has emerged as a way to harness and
take advantage of computing resources across geographies
and organizations. Grid architecture for an electronics
laboratory similar to the BTH one has already been
published [16, 17]. In this grid-based laboratory, a
measurement workflow execution service takes care of
executing the measures according to the rules and
sequence described in a measurement workflow
repository. It invokes instrument services and manages
multi-user concurrent sessions on the same physical test
bench. The composition of measurement workflows is in
charge to teachers, who provide the description of the
measurement process in terms of, for example,
instruments activation process. On the other hand,
knowing how to handle the measurement process is an
important part of lab assignments. To display a transient
on the oscilloscope, for example, the oscilloscope must
first be armed and then the transient is activated. Each
student, or student team, in front of a client computer
should have a workbench at their own disposal for
exclusive access, as in the local laboratory. Then the
Perform Experiment button in the BTH laboratory is no
longer required.

It should be possible to organize a grid laboratory
distributed among universities around the world. The
workbenches should be the proper grid nodes. Smaller
nodes are not feasible because the instruments and the
circuit under test must be located closely together. The
instruments and the circuit creation manipulator would be
device services accessible by the lab clients via virtual
front panels or a virtual breadboard, Fig. 4, 5. Web
services prescribe XML-based messages conveyed by
Internet protocols such as SOAP. However, real time
performance requires protocols without significant
latencies and overhead. For example, the oscilloscope
display should be updated at least every second.

It is possible to combine a virtual front panel
representing a particular instrument from one
manufacturer with the corresponding hardware from
another, as long as the performance of the hardware
matches that of the displayed instrument. The VISIR
client software package is modular and it is recommended
that every university creates virtual front panels
representing the instruments they have in their local
laboratories to preserve the student’s context.

Instrument I/O is a well-studied domain with
established industrial standards. Most commercial
products follow the Virtual Instrument System
Architecture (VISA) or the Interchangeable Virtual
Instrument (IVI) standards [18]. The IVI foundation
creates instrument class specifications. There are currently
eight classes, defined as DC power supply, Digital multi-
meter (DMM), Function generator, Oscilloscope, Power
meter, RF signal generator, Spectrum analyzer, and
Switch. Within each class, a base capability group and
multiple extension capability groups are defined. Base
capabilities are the functions of an instrument class that
are common to most of the instruments available in the
class. For an oscilloscope, for example, this means edge
triggering only. Other triggering methods are defined as
extension capabilities. For example, the functions
supported by the VISIR oscilloscope are listed in Table 1.
The goal of the IVI Foundation is to support 95% of the
instruments in a particular class.

It is not necessary to use IVI drivers, but to enable
interchangeability between grid nodes VISIR recommends
functions and attributes defined by the IVI Foundation to
be used to describe the capabilities of the lab hardware. In
this way it should be possible to create a standardized

TABLE I.
THE VISIR OSCILLOSCOPE CAPABILITIES

Group Name Description

IviScopeBase Base Capabilities of the IviScope
specification. This group includes
the capability to acquire waveforms
using edge triggering.

IviScopeWavefor
mMeas

Extension: IviScope with the ability
to calculate waveform
measurements, such as rise time or
frequency.

IviScopeTrigger
Modifier

Extension: IviScope with the ability
to modify the behavior of the
triggering subsystem in the absence
of a expected trigger.

IviScopeAutoSet
up

Extension: IviScope with the
automatic configuration ability.

A FLEXIBLE ELECTRONICS LABORATORY WITH LOCAL AND REMOTE WORKBENCHES IN A GRID

 5

approach which is easy to adopt.

V. CONCLUSIONS AND FUTURE WORK
BTH is disseminating software for an online

workbench, comprising the same equipment as a
workbench in a traditional electronics laboratory. The
equipment used in the BTH workbenches form robust
references for universities who are interested in
implementing similar remote or online laboratories. A
number of students can perform experiments on such a
workbench simultaneously by time sharing. This will be a
way for universities to provide free access to experimental
equipment for their students in order to produce true
experimenters without increased running cost per student.
Two universities have already implemented such
workbenches using the VISIR software, and are now using
them in their own courses. However, each remote student,
or student team, should have a workbench at their own
disposal to be able to control each step of the
measurement process. An approach to reach this more
ideal situation would be constituted by increasing the
number of online workbenches and organizing them in a
grid. Further research is required to accomplish real time
performance comparable with that of the local workbench,
when a web service approach is to be adopted. The goal is
to offer a lab experience that is as genuine as possible,
despite the lack of direct contact with the actual lab
hardware. Other research groups have developed
advanced communication methods, appropriate for a grid
laboratory. Such methods will be adopted.

REFERENCES
[1] D. Magin and S. Kanapathipillai, “Engineering Students’

Understanding of the Role of Experimentation”, European
Journal of Engineering Education, 2000, Vol. 25, no. 4, pp. 351-
358.

[2] L. D. Feisel and A. J. Rosa, “The Role of the Laboratory in
Undergraduate Engineering Education”, Journal of Engineering
Education, January 2005, pp 121-130.

[3] Cooper, M., “Remote laboratories in teaching and learning –
issues impinging on widespread adoption in science and
engineering education”, International Journal of Online
Engineering, Vol. 1 No. 1, 2005.

[4] Nedic, Z., Machotka, J., and Nafalski, A., “Remote Laboratories
Versus Virtual and Real Laboratories”, Proceedings of the 33rd
ASEE/IEEE Frontiers in Education Conference, Bolder, USA,
November 5 – 8, 2003.

[5] J. Ma, and J. V. Nickerson, "Hands-on, simulated, and remote
laboratories: A comparative literature review", ACM Computing
Surveys, 2006.

[6] D. Gillet, A. V. N. Ngoc, and Y. Rekik, “Collaborative Web-
Based Experimentation in Flexible Engineering Education”, IEEE
Transactions on Education, Vol. 48, No. 4, November 2005.

[7] Z. Nedic and J. Machotka, “Remote Laboratory NetLab for
Effective Teaching of 1st Year Engineering Students”,
Proceedings of the REV 2007 Conference, Porto, Portugal, June
25 – 27, 2007.

[8] A. M. Scapolla, A. Bagnasco, D. Ponta, and G. Parodi, “A
Modular and Extensible Remote Electronic Laboratory”,
International Journal of Online Engineering, Vol. 1 No. 1, 2005.

[9] J. Garcia-Zubia et al., ”WebLab-GPIB at the University of
Deusto”, Proceedings of the REV 2007 Conference, Porto,
Portugal, June 25 – 27, 2007.

[10] iLabs: Internet access to real labs - anywhere, anytime,
http://icampus.mit.edu/iLabs/, 2007-07-20.

[11] L. Gomes and J. Garcia-Zubia (eds), Chapter 11 in Advances on
remote laboratories and e-learning experiences, University of
Deusto, Bilbao, Spain, 2007, pp. 247 – 267, ISBN 978-84-9830-
077-2.

[12] http://www.ivifoundation.org/, 2007-12-15.
[13] I. Gustavsson et al., “An Instructional Electronics Laboratory

Opened for Remote Operation and Control", Proceedings of the
ICEE 2006 Conference, San Juan, Puerto Rico, July 23 - 28, 2006.

[14] MJ. Callaghan, J. Harkin, TM. McGinnity and LP. Maguire,
“Paradigms in Remote Experimentation”, International Journal of
Online Engineering, Vol. 3 No. 4, 2007.

[15] I. Gustavsson et al., “The VISIR project – an Open Source
Software Initiative for Distributed Online Laboratories”,
Proceedings of the REV 2007 Conference, Porto, Portugal, June
25 – 27, 2007.

[16] A. Bagnasco, A. Poggi, A. M. Scapolla, “A Grid-based
Architecture for the Composition and the Execution of Remote
Interactive Measurements, ”2nd IEEE International Conference
on e-Science and Grid Computing, Amsterdam, the Netherlands,
Dec. 2006.

[17] A. Bagnasco, A. Poggi, A. M. Scapolla, “Computational GRIDSs
and Online Laboratories”, 1st International ELeGI Conference on
Advanced Technology for Enhanced Learning, 2005.

[18] Y. Yan, Y. Liang, X. Du, H. Saliah-Hassane, and A. Ghorbani,
”Putting Labs Online with Web Services”, IT Pro, March׀April
2006, Published by the IEEE Computer Society.

AUTHORS
I. Gustavsson is with Blekinge Institute of Technology,

Ronneby, Sweden (e-mail: ingvar.gustavsson@ bth.se).
J. Zackrisson is with Blekinge Institute of Technology,

Ronneby, Sweden (e-mail: johan.zackrisson@ bth.se).
K. Nilsson is with Blekinge Institute of Technology,

Ronneby, Sweden (e-mail: kristian.nilsson@ bth.se).
J. Garcia-Zubia is with University of Deusto, Bilbao,

Spain (email: zubia@eside.deusto.es).
L. Håkansson is with Blekinge Institute of

Technology, Ronneby, Sweden (e-mail: lars.hakansson@
bth.se).

I. Claesson is with Blekinge Institute of Technology,
Ronneby,Sweden (e-mail: ingvar.claesson@ bth.se).

T. Lagö is with Acticut International AB (owner of
Axiom EduTech), Falkenberg, Sweden (e-mail:
thomas.lago@axiom-edutech.com).

Manuscript received 29 March 2008. The VISIR project is supported
by VINNOVA (Swedish Governmental Agency for Innovation Systems).

Supported by

Virtual Instrument Systems in Reality - VISIR

An Open Source Software Initiative for Distributed Online Laboratories

 Background

The VISIR Initiative started at the department of Signal Processing in 1999 as a supplement to

local instructional laboratories. The concept is about providing new possibilities for students to

do laboratory work and become experimenters by adding a remote operation option to

traditional instructional laboratories to make them more accessible for students, irrespective of

whether they are on campus or mainly off campus. This option is equipped with a unique interface

enabling students to recognize on their own computer screen instruments (oscilloscopes,

waveform generators, multi-meters, power supplies, and solderless breadboards) which students

have prev iously used in the local laboratory . This kind of new pedagogical tools supplement

experiments in the local laboratory . Students are prov ided the opportunity to try their skills in

new and less stressful environments where they may execute commands as many times as needed

for understanding. This option provides the unlimited opportunity for repetition of experiments,

training and understanding in remote control labs before an examination. The project focuses on

physically real equipment in the lab and has many benefits compared to simulation programs.

Students can make real mistakes and come to a certain conclusion by their occurrence while

simulators do not allow for such kind of conclusions. Physical experiments are necessary parts in

many educational and professional activ ities, but practical issues of those experiments may

create certain restrictions. Many technical institutes in the world are not able to prov ide the same

high level of technical and experimental means for their students. Financial positions are often

the most prominent problems. Many steps towards utilizing remote experiments have been made

in simulated environments. Blekinge Institute of Technology was among the first to promote the

new conception of real world experiments in remotely controlled education, and initiated a big

interest worldwide. Now there is an opportunity to practically make use of the open source

software and provide full access to experimental resources in a standardized way to students and

others which may utilize web-based education.Today the department of Signal Processing has two

online laboratories one electronics lab and one signal processing lab for mechanical v ibration

experiments based.

Sektionen för teknik

10-1-2009 Fo.Proj - VISIR - Blekinge Tekniska …

www.bth.se/tek/asb/research/visir 1/4

The focus of the project

The focus of v irtual instruments in education is to increase the use of information- and

communication-technologies in the education system as well as in the industry . VISIR aims at

forming a group of cooperating universities and other organizations, a VISIR Consortium,

creating software modules using open source technologies for online laboratories and/or setting

up online lab stations. During the recent decades the amount of laboratory work in engineering

education, etc. has been reduced. Basically the number of students has increased, while staff and

funding resources have diminished. The VISIR project is an initiative to provide means for

sustainable development in the education system as well as in the industry . By enabling access to

experimental equipment for everyone everywhere as well as providing new tools, makes

marketing and installation of new education facilities more effective. The VISIR project creates

opportunities enabling the development of competitive actors on a global education market and it

is based on an initiative to create open source software to be used for distributed online

laboratories.

Since most engineering disciplines needs to prov ide means for practical experience in hand, the

ideal outcome from the project would be a complete standardization of technical remote

laboratories. Teachers, or other professional developers, can then develop indiv idual

experiments, even where manual interactiv ity is needed. BTH will act as a hub for the

development and maintain a server from which the current version of the software can be

downloaded. The server is already in place loaded with the software presently used in the

electronics lab and the signal processing lab,

http://svn.openlabs.bth.se/trac.

In the VISIR project these two laboratories will be disseminated, enhanced, and further

developed to distributed laboratories where the lab stations will be set up and maintained by a

cooperating universities or other organizations. The Consortium will seek EU funding for common

online laboratories.

The overall goal is increasing the access to experimental equipment worldwide. The means are

shared online lab stations created by universities in cooperation and supported by instrument

10-1-2009 Fo.Proj - VISIR - Blekinge Tekniska …

www.bth.se/tek/asb/research/visir 2/4

vendors. Sharing of laboratories may lead to sharing of course material. The ultimate goal of our

research at the department of Signal Processing is ubiquitous physical experimental resources

accessible 24/7 for everyone as a means of inspiring and encouraging children, young people and

others to study engineering and become professionals or to be used as a means of life-long

learning.

Blekinge Institute of Technology s conception is that VISIR offers a high degree of variability from

a pedagogic point of v iew and can also be expanded into other scientific spheres, such as

mechanical engineering, physic, chemistry etc.

Recommended standards

Standards for instrument drivers are already available. VISIR recommends the standard IVI

(Interchangeable Virtual Instrument). The IVI Foundation,

 http://www.iv ifoundation.org/,

is a group of end�user companies, sy stem integrators, and instrument vendors, working together

to define standard instrument programming APIs (Application Programming Interface). The IVI

standards define open driver architectures, a set of instrument classes, and shared software

components. Hardware platforms such as PXI (PCI eXtensions for Instrumentation),

http://www.pxisa.org/

or LXI (LAN eXtensions for Instrumentation),

http://www.lxistandard.org/home,

are recommended.

The concept will be expanded to laboratories for physical experiments in other areas which are

feasible to perform experiments using remote operation.

A VISIR Consortium chaired by BTH will be formed to release new extended future versions.

Project organization and invitation to participate

The partners who have created the VISIR project are Axiom EduTech in Sweden, BTH, and

National Instruments in USA. So far FH Campus Wien in Austria and University of Deusto in Spain

are participating in the project. University of Genoa in Italy , Carinthia University of Applied

Sciences in Austria, Gunadarma University in Indonesia, UNINOVA (Institute for the

Development of New Technologies) in Portugal, and University Transilvania of Brasov in Romania

are interested to join the consortium. Other universities and organizations are most welcome to

participate in the project. Please contact the project leader.

 Project leader: Ingvar Gustavsson

10-1-2009 Fo.Proj - VISIR - Blekinge Tekniska …

www.bth.se/tek/asb/research/visir 3/4

Postadress: Blekinge Tekniska Högskola, 37 1 7 9 Karlskrona

Telefon: 0457 - 38 57 02 | Fax: 0457 - 27 9 14

Ansvarig för sidan: Ingvar Gustavsson | Sidan ändrad: 26-05-2008

10-1-2009 Fo.Proj - VISIR - Blekinge Tekniska …

www.bth.se/tek/asb/research/visir 4/4

	1. Introduction to the Project
	2. Project Statements
	2.1 Formal Client
	2.2 Project Leader
	2.3 Initial Situation
	2.4 Project Justification
	2.5 Project Product
	2.6 Project deliverables and non-deliverables
	2.7 Project constraints
	2.8 Project risks

	3. Development Method
	4. Communication Plan

