Object Recognition by Contour Matching

P.J.H.M. Boots, D. van Schenk Brill

Fontys University of Professional Education, IPA Research Centre
Eindhoven, Netherlands,

emails: P.Boots@fontys.nl and D.vanSchenkBrill@fontys.nl

THE I3 PROJECT

The I3 project involves the implementation of a model for education in innovative engineering with industrial coeducation. The model (see [1]) was developed by three knowledge transfer centres affiliated to the Fontys University of Professional Education (technological departments). Those were the centre for Medical Technology, the Environmental research centre and the IPA (Integrated Production Automation) research centre. In short the model implies, that students from different departments will fulfil the last 18 months of their (polytechnic) studies fully in industrial practice. They have to work in project teams that are innovative, interdisciplinary and internationally oriented (the three I’s). Within the project teams modern ways of working are applied as described in (see [6] and [7]). There are multiple I3 student groups working simultaneously in different companies; one of these is located at Philips CFT (Centre for Industrial Technology) Eindhoven, department of Industrial Vision (IV). At CFT, the I3 project team is involved in research and developments in the field of motion control with vision.

PROJECT BACKGROUND

The goal of the project at CFT-IV is to gain experience in controlling the motion of a robot by using a vision system. Normally, such a movement is controlled by means of sensors that measure the actual position of each individual joint. A feedback loop locks the motors into predefined positions (called 'setpoints') and a setpoint generator is used for generating consecutive setpoints, e.g. for following a smooth spline path (see [2]).
The path followed by the robot arm is strictly defined by those setpoints, and therefore this approach, although very common, has some drawbacks:

· When the position or orientation of an object can vary from one situation to the other, it can be difficult to program the robot-movements in such a way that the object is always grasped correctly.

· When the situation is such that the object is moving randomly, it is difficult to follow the object with a robot.

· In order to achieve a reasonable accuracy, it is always necessary to calibrate the robot joints.

· Extensive computations may be necessary for transforming real-world co-ordinates to robot joint positions.

These problems can possibly be solved when a vision system is used for controlling the robot instead of, or in addition to, the normal sensors. In this respect it is crucial that we have a vision system that can quickly recognize objects in an image (e.g. the object to be grasped). Cycle times of 1 msec are typical for fast moving robots.

This paper describes one of the results in the field of object recognition achieved by the project team thus far. Other results were described in [3].

CONCEPT

Object recognition

This article deals with automatic object recognition. The goal is that in a certain gray-level image, possibly containing many objects, a certain object can be recognized and localized, based upon its shape. The assumption is that this shape has no special characteristics on which a dedicated recognition algorithm can be based (e.g. if we know that the object is circular, we could use a Hough transform similar to the one described in [4] and [5], or if we know that it is the only object with gray level 90, we can simply use thresholding). Our starting point is an object with a random shape. The image in which the object is searched is called the Search Image. A well known technique for this is Template Matching, which is described first.

Template Matching

With template matching, first a small picture (called a Template) of a sample object (or a part of it) is made and this Template is placed on every position in the Search Image, computing a Match Value for each such position. This Match Value is a measure for the resemblance between the Template and the Search Image on that position and it is computed by comparing every pixel of the Template to the corresponding pixel of the Search Image. Therefore, with an n by m model n*m operations have to be performed on every position. When the image is N by M, (N-n)*(M-m)*n*m operations have to be performed in total. Two drawback of this method have led to the conception of a new method:

· A lot of operations have to be done on pixels in the Template that do not contain really relevant information (e.g. the background pixels). This influences the speed of the algorithm.

· Variations in lighting conditions may change the appearance of the object in such a way that it does not resemble the Template enough to yield a reasonable Match Value. This influences the performance of the algorithm.

Contour matching

Both above mentioned drawbacks of Template Matching can be addressed by restricting the attention to a limited set of Template pixels that is really characteristic for the object. This can lead to a faster and more robust algorithm. There is however a caveat: since, compared to template matching, a smaller number of pixels is involved in the recognition, the influence of each single pixel is greater, meaning that a few deviating pixels may hinder recognition. This has to be prevented.

In this project, the contour is considered to be the most characteristic part of an object, which is true for many applications. The algorithm consists of two steps: making the Contour Model, which is done once, and searching the object in a Search Image, which is done repeatedly for different Search Images. These steps will be described below.

BASIC ALGORITHM

Model making

The Contour Model is derived from a small picture of a sample object or of a characteristic part of such an object. In this image the edges are detected by using some edge detection algorithm like Sobel or Canny. This results in a gray level image where the edges are light and the uniform parts are dark. In this image, the actual edges are discriminated by a thresholding operation. In Figure 1, the left picture is the object itself, the middle picture is the object after edge detection, the right picture is the object after edge detection and thresholding. Note that the Contour Model is now binary: it contains only edge pixels.

[image: image3.png]S 1

Figure 1
Matching

When the Contour Model is available, containing the pixels that are on the edge of (a part of) the object, we need to transform the gray level Search Image that is retrieved from the camera or other imaging device into an image with only edges, using again an edge detector like Sobel or Canny. Like with Template Matching, the model is placed on all possible positions in the Search Image, computing a Match Value for every position. The Match Value now is based on the edge pixels in the Contour Model only: all Search Image pixels that correspond to an edge pixel in the Contour Model are added. The higher this value is, the better the resemblance between model and image. In most cases, there will be a unique position where the object has a maximal Match Value.
Before computing the Match Value, the edge detected Search Image must be normalized by stretching the gray values in such a way that every Search Image has the same intensity range.

OPTIMIZATIONS

Three ways of optimizing the basic algorithm are discussed here: optimizing the Contour Model for faster and more reliable recognition, making the algorithm more insensitive to small deviations and speeding up the matching process.

Optimizing the Contour Model

There are two conflicting demands upon a Contour Model:

· The less pixels there are in the model, the faster the matching algorithm can be because there are less values to add.

· Since only edge pixels contribute to the Match Value, the less pixels there are in the model, the higher the chance that the object will be found, also under non-optimal conditions.

· The more pixels there are in the model, the less objects will be inadvertently recognized as the searched object.

Hence, the general rule for optimizing a model is: restrict the number of edge pixels as much as possible, keeping those pixels that really contribute to characteristic parts of the object.

[image: image1.png]

[image: image2.png]S 1

When the model is not optimal, it is possible to enhance it in a number of ways:

· Enhance the image before edge detection by using a filter to remove small disturbances in the model which would otherwise result in spurious edge pixels (clearly visible in the right image in Figure 1).

· Allow the user to edit pixels in the model. In this way the user can manually enhance the model by removing unnecessary pixels and/or adding characteristic pixels.

Since the edge of the (lighter) center part of the object in Figure 1 is very characteristic, all other edge pixels can be removed: the edges of all the holes (because these are sensible for changing light conditions), the edges of the outer (darker) parts of the object and all spurious edge pixels scattered over the image. Also the model is completed by closing the gaps in the remaining edge manually. The result is shown in Figure 2.

Handling small deviations with Distance Transformation

In real life, an object may be slightly rotated in the image because of small positioning errors. In the previous subparagraph, it is explained that the number of pixels in the model should be kept small. This, however, may cause the algorithm to fail completely in finding the object when it is tilted because image edge pixels falling outside the Contour Model edges are not counted in at all, thus keeping the Match Value low. A way out of this would be to make edges in the model thicker such that, after a slight rotation, the edges of the object in the image still fall inside the edges of the Contour Model. This, however, has some obvious disadvantages:

· The object will be recognized multiple times because it falls inside the model edges on several positions. This means that a supplementary step is needed to find the exact position of the object.

· Also objects that do not resemble the search object very well could render a high Match Value.

The alternative is to perform a Distance Transformation on the model: the original edge pixels get the highest gray value (255), pixels far from any edge get the lowest gray value (0) and pixels close to the edges get a value that is related to the distance to the edge. In this way, the Contour Model is not binary anymore, but contains gray values. Therefor, the computation of the Match Value has to change also: for every non-zero position in the Contour Model, corresponding pixels in the Contour Model and in the Search Image are multiplied and all results are added.
In this way, the object itself gives the highest Match Value, and slightly rotated or deviating objects give a lower, but still noticeable Match Value.

One way to implement this Distance Transformation is to use a Gaussian distribution of pixel values centered around the edge. (-values 2 and 3 are used here.

Optimizing the speed with RCStore

A Contour Model is a matrix of n by m pixels which is sparsely occupied with edge pixels. The algorithm as it is described thus far checks every pixel in the model and when it is not 0, some operation is performed. This means that an abundance of pixels is checked needlessly. In order to make the algorithm feasible, this must be optimized by storing and processing only pixels that really contribute to the Match Value. To this end, a linked structure, adapted to this application, is used to store these pixels, instead of a 2-dimensional array. One could be inclined to use Run Length Encoding for storing an image, but in this case RLE is not very suited because the number of consecutive, equal valued, pixels is generally low. Therefore a new storage method has been devised, called RCStore, in which every pixel is stored separately row by row. The RCStore is an array containing 3-membered elements:

· a number RC that can be either the number of a row or the number of a column (when RC is a row number, the corresponding element is called a row element, otherwise it is called a column element),

· a flag N which denotes whether the next element refers to the same row (N=0) or to the next row (N=1) and

· a value G which denotes the gray value of the concerning pixel (only relevant for column elements).

Every row starts with a row element and every row element is followed by at least one column element which has RC value MAX when the corresponding row is empty.
For the last column element of a row, the N flag is 1, and this element is followed by a row element for the next row.
The array starts with a row element for row 0.

The following example will clarify this.
If the points to be stored are in (R,C) coordinates: (0,10), (3,5), (3,12) and (4,9), the resulting RCStore is:

RC
0
10
1
MAX
2
MAX
3
5
12
4
9

N
0
1
0
1
0
1
0
0
1
1
1

G

G

G

G

G
G

G

The choice has to be made whether to store the model pixels in this RCStore, or the image itself (note that it would make the algorithm more complicated if both the model and the image would be converted to RCStore). To answer this question we must realize that there are 2 reasons for using the RCStore: less memory is needed to store the image and less time needed because irrelevant pixels are omitted. Under the assumption that the Search Image will be as sparse (relatively) as the Contour Model, it is much more efficient to use the RCStore for the Search Image. A disadvantage of this is that a conversion from image to RCStore has to be done for every image instead of once for the model, but this can be combined with the edge detection algorithm including a thresholding operation, and in this way does not increase computation time too much.

An algorithm has been devised for efficiently scanning the Search Image with the Contour Model. This is not further described.

CONCLUSIONS

The work so far learned that the method is feasible, but a lot of effort is needed for speeding up the algorithm. This can quite easily be done by removing unnecessary method-calls in the current implementation. This will probably make the code less readable and less structured, but it will increase the speed considerably. In the end, the algorithm will be implemented largely in hardware since it will be deployed in robot control applications which require very low cycle times.

The next goal is to make the algorithm suitable for rotated and scaled objects. To reach this, a set of Contour Models is used, containing separate models for a discrete number of rotation angles and scaling factors.

ACKNOWLEDGEMENTS

This paper is based on the work of Bart Rijvers, graduate student at Fontys University of Professional Education in Eindhoven (see [8]). We thank Philips CFT, department IV, for permitting this publication.

REFERENCES

[1] Bakker, R. M., Geraedts, H. G. M. & van Schenk Brill, D. (1999), A Model for Education in Innovative Engineering, WESIC1999, Newport.

[2] Boots, P.J.H.M. (1997), A Spline Generator Interface for OMC SAC, Software Requirements Specification, Philips CFT internal report.

[3] Boots, P.J.H.M. & van Schenk Brill, D. (2001), Motion control with vision, WESIC 2001, University of Twente, Enschede.

[4] Davies, E.R. (1997), Machine Vision, Academic Press, San Diego, USA

[5] Hough, P.V.C. (1962), Method and means for recognising complex patterns, US Patent 3069654

[6] Kollenburg, P.A.M., Veenstra, H., van Schenk Brill, D., Ihle, H. & Kater, K. (2000), Integrated Product Development and Experiences of Communication, TMCE2000, Delft.

[7] Kollenburg, P.A.M. van, Schenk Brill, D. van, Schouten, G., Mulders, P. Ochs, J.B. & Zirkel, M. (2000), Collaborative Engineering Experiences, Eng. & Product Design Education Conf. 2000, Brighton.

[8] Rijvers, B (2002), Object Recognition by Contour Matching, Fontys Graduation Report & Philips CFT Internal report

� EMBED PBrush ���

Figure � SEQ Figure * ARABIC �2�

_1087144189

_1087144447

