

Problem solving

and Program design
using the TI-92

A.J. Marée
M.H.A. van Dongen

February 01, 2000

Problem solving and Program design using the TI-92 i

Copyright  1999 by A.J. Marée and M.H.A. van Dongen.
All rights reserved. No part of this publication may be reproduced, stored in a
retrieval system, or transmitted, in any form or by any means, electronic,
mechanical, photocopying, recording, or otherwise, without the prior written
permission of the writer A.J. Marée. Printed in the Netherlands.
ISBN 90-…………………

ii Problem solving and Program design using the TI-92

Problem solving and Program design using the TI-92 iii

CONTENTS
PREFACE .. V
1. INTRODUCTION ... 1

1.1 STARTING A SIMPLE PROGRAM... 1
2. PROGRAM STYLE .. 3

2.1 CLEAR SCREENS AND RESET MEMORY ... 3
2.2 CREATING A NEW FOLDER .. 4
2.3 COMMENTS .. 5
2.4 INDENTATION ... 6
2.5 CREATING A NEW PROGRAM ... 6
2.6 DEBUGGING A PROGRAM .. 8
2.7 ENTERING A GRAPHING PROGRAM ... 10
2.8 LISTING THE PROGRAMS YOU HAVE CREATED .. 12
2.9 SUMMARY OF COMMANDS .. 13
2.10 PRACTICAL PROBLEMS .. 14

3. PROGRAM STRUCTURE ... 15
3.1 DRAWING A SPECIFIC OBJECT ... 15
3.2 MAKING A PROGRAM MORE FLEXIBLE .. 16
3.3 COURTEOUS PROGRAMMING: GETMODE & SETMODE .. 20
3.4 SUMMARY OF COMMANDS .. 21
3.5 PRACTICAL PROBLEMS .. 23

4. TOP-DOWN DESIGN & PROGRAM DESIGN .. 25
4.1 SOFTWARE DEVELOPMENT METHOD .. 25
4.2 TOP-DOWN DESIGN .. 28

4.2.1 Drawing a House: An example .. 28
4.3 SUMMARY OF COMMANDS .. 34
4.4 PRACTICAL PROBLEMS .. 35

5. SELECTION CONTROL STRUCTURES ... 37
5.1 THE IF…THEN…ENDIF STATEMENT .. 37

5.1.1 Order a pair of data values: An example ... 37
5.1.2 Is the number an integer? : An example .. 38

5.2 THE IF…THEN…ELSE…ENDIF STATEMENT .. 39
5.2.1 The absolute value of a number: An example .. 39
5.2.2 Rental Car Pricing: An example .. 40

5.3 THE IF…THEN…ELSEIF…ENDIF STATEMENT ... 40
5.4 TOP-DOWN PROGRAM DESIGN ... 41

5.4.1 The ABC Formula: An example ... 43
5.4.2 Assigning Exam Scores to Letter Grades: An example .. 48

5.5 SUMMARY OF COMMANDS ... 50
5.6 PRACTICAL PROBLEMS .. 52

6. REPETITION CONTROL STRUCTURES ... 55
6.1 THE FOR…ENDFOR STRUCTURE .. 55
6.2 THE LOOP...ENDLOOP STRUCTURE ... 56
6.3 THE WHILE...ENDWHILE STRUCTURE .. 57
6.4 USING LOOPS TO ACCUMULATE A SUM AND AVERAGE .. 58

6.4.1 Using a For…EndFor Loop ... 58
6.4.2 Using a Loop ... EndLoop Loop ... 59
6.4.3 Using a While ... EndWhile Loop ... 59

6.5 NESTED LOOPS ... 60
6.5.1 Create and Fill a Matrix: An example ... 61
6.5.2 Print Out Zeros of an Expression: An example.. 64

6.6 SUMMARY OF COMMANDS ... 65

iv Problem solving and Program design using the TI-92

6.7 PRACTICAL PROBLEMS .. 67
7. FUNCTIONS, SUBROUTINES, PROGRAMS AND PARAMETERS .. 71

7.1 FUNCTIONS ... 71
7.1.1 Create an Absolute Value Function: An Example ... 73
7.1.2 Create an Factorial Function: An Example ... 74

7.2 INTRODUCTION TO PARAMETER LISTS ... 75
7.3 SUMMARY OF COMMANDS ... 78
7.4 PRACTICAL PROBLEMS .. 79

8. DATA TYPES .. 81
8.1 REAL NUMBERS .. 81
8.2 EXPRESSIONS .. 81
8.3 STRING VARIABLES .. 82

8.3.1 Create a Count Letters Program: An Example .. 83
8.4 LIST VARIABLES ... 84

8.4.1 Findkey, a List Variables Program: An Example .. 85
8.5 DATA VARIABLES ... 87
8.6 MATRIX VARIABLES ... 88

8.6.1 Matrix multiplication: An Example .. 89
8.7 DATA TYPES AND DATABASES ... 89

8.7.1 Access information in a NAC database: An Example .. 91
8.8 SUMMARY OF COMMANDS ... 97
8.9 PRACTICAL PROBLEMS .. 100

9. MENUS AND DIALOG BOXES .. 103
9.1 DESIGNING MULTIPLE MENUS.. 103
9.2 CREATING DIALOG BOXES ... 105
9.3 CREATING CUSTOM AND POP-UP MENUS ... 108
9.4 SUMMARY OF COMMANDS ... 112
9.5 PRACTICAL PROBLEMS .. 115

APPENDIX .. 117
A. TI-92 FUNCTIONS, INSTRUCTIONS AND COMMANDS .. 119
B. TI-92 CHARACTER CODES .. 139

Problem solving and Program design using the TI-92 v

Preface

This textbook is intended for a basic course in problem solving and program design needed by
scientists and engineers using the TI-92. The TI-92 is an extremely powerful problem solving tool
that can help you manage complicated problems quickly. We assume no prior knowledge of
computers or programming, and for most of its material, high school algebra is sufficient
mathematica background. It is advised that you have basic skills in using the TI-92. After the course
you will become familiar with many of the programming commands and functions of the TI-92.

The connection between good problem solving skills and an effective program design method, is
used and applied consistently to most examples and problems in the text. We also introduce many
of the programming commands and functions of the TI-92 needed to solve these problems. Each
chapter ends with a number of practica problems that require analysis of programs as well as short
programming exercises. All programs listed in this book are available for downloading from
http://www.fontys.nl/procesregeling/probleemanalyse/index_proban.htm

We would welcome comments for improving this text, because this is one of the first textbooks to
problem solving and program design fully integrate in the TI-92. If you have constructive criticisms
to help writing a second edition please write to the authors in Eindhoven or send an E-mail to
T.Maree@fontys.nl or MHA.vanDongen@fontys.nl.

We hope that you will enjoy your course in problem solving and program design using the TI-92.

Finally, we thank our colleagues Jan Jelle Claus and Lilian van Erk-Frijters who provided us with
significant contributions and many helpful comments and suggestions which improved the
presentation.

Ir.ing. A.J. (Ton) Marée
Ir. M.H.A. (Martijn) van Dongen

http://www.fontys.nl/procesregeling/probleemanalyse/index_proban.htm�
mailto:t.maree@fontys.nl�
mailto:MHA.vanDongen@fontys.nl�

Problem solving and Program design using the TI-92 1

1. Introduction

History
Blaise Pascal devised the first adding machine, a
precursor of the digital computer, in 1642.
He developed a mechanical calculator to speed
arithmetic calculations for his father, a tax
official. This device employed a series of ten-
toothed wheels each tooth representing a digit
from 0 to 9. The wheels were connected in such a
way that numbers could be added to each other by
advancing the wheels by a correct number of
teeth. Numbers are dialed in on the metal wheels
on the front of the calculator. The solutions
appear in the little windows along the top.

Program
Since a computer is not able to think, it requires a
program to do a task. A program is a sequence of
instructions, which combined can perform any
number of tasks.
Program design involves much more than simply
writing a list of instructions. Problem solving is a
crucial component of program design and
requires a good deal of preplanning. Before
writing a program to solve a particular problem,
you must consider carefully all aspects of the
problem breaking it down into small parts, and
then writing commands that solve each of these
smaller problems. You write programs in small
chunks, following predefined steps. Certain parts
must be placed in specific locations within a
program and must follow certain rules.

1.1 Starting a Simple Program

The Program Editor
The mechanics of entering a program as a source
file, translating it to machine language, and
executing the machine language program differ
on each computer system. In this text, we use the
TI-92 pocket computer. The TI-92 provides an
integrated programming environment, which
means that you will be able to create, edit,
compile and execute programs from within the
TI-92.

 Pascal, Blaise (1623-1662)
French philosopher,
mathematician, and physicist.

2 Problem solving and Program design using the TI-92

You enter and edit programs in the Program
Editor.
1. Press O to start a new program in the

Program Editor, select 7:Program Editor,
and then select 3:New.

2. Choose Program as the Type.

Naming a Program

1. Press D D to move past the Folder item to

the Variable item.
2. Type hello as the name of the new program

variable.
3. Press ¸to highlight the name.
4. Press ¸again to accept all the choices in

the dialog box.

Entering the Program Code

You are now in the Program Editor. The name of
the program, followed by parentheses (), is
displayed at the top of the program template, just
below the menu items. The template also
provides the colons (:) that begin every program
line, the first statement, Prgm, and last statement,
EndPrgm, every program requires these two
statements.
Always start entering your program at the cursor,
which is placed, between the Prgm and
EndPrgm statements.

Type in the program line, the - Disp "Hi" -
statement as shown to the right.
To type the quote marks, press 2 L

Executing the Program

1. Press ¥ " or 2K to return to the

Home screen.
2. Press M to clear the entry line, if

necessary
3. Type hello() and press ¸.

The PrgmIO (Program Input/Output) screen is
displayed with the word Hi on the last line of
information. This line should be at the top of the
PrgmIO screen (if you did not use the TI-
programming facilities before).

Problem solving and Program design using the TI-92 3

2. Program Style

Program style refers to many aspects of
programming-the formatting of various
statements, comments, indentation of blocks, and
so on. And just as there is no universal style for
writing English, there is no universal style for
writing programs. However, some general rules
apply.
Good program style promotes the writing of
programs that work and are easy to maintain and
modify.
Don't fall into the trap of quickly typing in your
program, with good intentions to edit it later on.
Instead, type your programs using good program
style from the very beginning.

2.1 Clear Screens and Reset Memory

Before beginning each TI-92 activity you are
recommended to clear the HOME-screen the
Y=Editor, any user-defined variables and
partially reset the memory.

Clear the HOME-screen
Press: ƒ select 8:Clear Home ¸ M

Clear the Y=screen
Press: ¥#ƒ select 8:Clear Functions ¸

Clear (user defined) 1-character variables
Press: ¥"ˆ¸

The MEMORY screen
Press: 2¯ to show the memory screen. This
screen shows how your TI-92's memory is being
used. The screen shows the amount of memory
(in bytes) used by each variable type and the
amount of free memory. You can also use this
screen to reset the memory.

4 Problem solving and Program design using the TI-92

Resetting the Memory
1. Press: ƒ (from the MEMORY-screen)
2. Select the applicable item

1:All
Deletes all user-defined variables, functions,
and folders; resets all system variables and
modes to their original factory settings.
2:Memory
Deletes all user-defined variables, functions,
and folders. This does not affect system
variables (xmin, ymin, etc.) or mode settings.
3:Default (advised)
Resets all system variables and modes to their
original factory settings. This does not affect
any user-defined variables, functions, or
folders.

2.2 Creating a new folder

Using Folders
Folders give you a convenient way to manage
programs and variables by organizing them into
related groups. For example, you can create
separate folders for different TI-92 applications.
The TI-92 has one built-in folder named MAIN,
and by default all variables are stored in that
folder. By creating additional folders, you can
store programs, independent sets of user-defined
variables and functions apart from each other.

System variable or a variable with a reserved
name are independent of the folder and are not
shown in the °-screen (Y1(x), xmin,
xmax, Y= Editor functions etc.).
User-defined variables however are dependent of
the folder and can therefore have different values
in different folders.
The user-defined variables in one folder are
independent of the variables in any other folder.
Therefore, folders can store separate sets of
variables with the same names but different
values.
Note: User-defined variables are stored in the
"current folder" unless you specify otherwise.
You can access a user-defined variable that is not
in the current folder. Specify the complete
pathname instead of only the variable name.
A pathname has the form:
 foldername\variableName.

Problem solving and Program design using the TI-92 5

You can create a new folder from:
1. the Home screen

Enter the NewFold command:
NewFold foldername
this new folder "foldername" is set
automatically as the current folder.

2. the °-screen (Refer to your TI-92
Guidebook).

You can set the current folder from:
1. the Home screen

Enter the setFold function: setFold
(foldername)
setFold is a function, which requires you to
enclose the folder name in parentheses ().

2. the MODE Dialog Box; Press: 3 select
Current Folder etc.. (Refer to your TI-92
Guidebook).

2.3 Comments
Programmers make a program more readable by
using comment to describe the purpose of the
program, the use of the identifiers, and the
purpose of each program step.
Before implementing each step in the initial
algorithm, you should write a comment that
summarizes the purpose of the algorithm step.
This comment should describe what the step
does. Comments help the reader of the program
understand how it works.
Commenting takes a little effort, but it is an
invaluable aid in debugging, maintaining, and
enhancing your programs. Someone other than
yourself may have to modify your program
someday: If your program didn't have comments,
it would be like cooking a gourmet meal from a
recipe that lists all the ingredients but gives no
instructions on how to combine them.
Comments begin with a ¦. Any information to
the right of the ¦ is not executed when you run
the program.
Hint: to type ¦, press 2 X.

Begin every program block of associated
statements with a comment line.

6 Problem solving and Program design using the TI-92

2.4 Indentation
Indent one or two spaces, after the comment-line
of every block of statements, which belong
together. Make it a habit to indent and align
associated statements. This save you hours of
thumbing through printouts, trying to found out
which statements belong together. It is easy to
read and understand, (especially for someone
other than yourself).

2.5 Creating a new program
To create a new program, you begin:

1. Clear the HOME-screen the Y=Editor, any

user-defined variables and reset the memory.

2. Make a new folder (from the Home screen)

3. Start a new Program in the Program

Editor
You enter and edit programs in the Program
Editor. Press O to start a new program in
the Program Editor, select 7:Program Editor,
and then select 3:New.
Choose Program as the Type.

4. Naming the Program

Press D D to move past the Folder item to
the Variable item.
Type hello2 as the name of the new program
variable.
Press ¸to highlight the name.
Press ¸again to accept all the choices in
the dialog box.

5. Entering the Program Code

You are now in the Program Editor. The name
of the program, followed by parentheses (), is
displayed at the top of the program template,
just below the menu items. The template also
provides the colons (:) that begin every
program line, the first statement, Prgm, and
last statement, EndPrgm, every program
requires both of which.
Always start entering your program at the
cursor, which is placed, between the Prgm
and EndPrgm statements.

Problem solving and Program design using the TI-92 7

Type in the program line, the
Disp "Hi again"
statement as shown to the right.
To type the quote marks, press 2 L

6. Running the Program

Press ¥ " or 2K to return to the
Home screen.
Press M to clear the entry line, if
necessary.
Type hello2() and press ¸.

The PrgmIO (program input/output) screen is
displayed with the word Hi on the last line of
information. This line should be at the top of
the PrgmIO screen. Run the program again
and again.
Return to the Home screen by pressing
¥".
Notice that hello2() is still in the entry line.

Once again, "Hi again" is displayed on the
PrgmIO screen. This screen looks a lot like
the Home screen; however, you cannot access
any of the menu items at the top of the screen
(except PrgmIO), and there is no entry line.
You may sometimes mistake this screen for
the Home screen. The Home screen is the
screen where you ran the hello2() program
from.

7. Changing the program

Clear the PrgmIO Screen.
Press O, select 7:Program Editor, and
then select 1:Current.
Move the cursor to the end of Prgm and press
¸ to insert a new blank line.
With the cursor at the beginning of this new
blank line, press the space bar twice for the
proper indentation and type ClrIO. This
statement Clears the PrgmIO Screen.
Run the program again and again.

Clear the Home Screen
Press O, select 7:Program Editor, and
then select 1:Current. Move the cursor to the

8 Problem solving and Program design using the TI-92

end of Prgm and press ¸ to insert a new
blank line.
With the cursor at the beginning of this new
blank line, press the space bar twice for the
proper indentation and type ClrHome. This
statement Clears the Home Screen.
Run the program and go back to the Home
Screen.

2.6 Debugging a Program

The TI-92 is designed to help you find and
correct errors in your programs. This process is
called "debugging." Debugging is the process of
finding and correcting errors ("bugs").
When you try to run a program that contains a
syntax error, such as a misspelled command name
or a missing quotation mark, the TI-92 displays
an error message like the one shown to the right.
To return to the program and correct the error,
press ¸.
The program is displayed with the cursor on the
line where the error occurred or where the
program has gone wrong.
You can trace backward to find the syntax error.
Correct the error, return to the Home screen , and
run the program again.

Example 1: A missing quotation mark"
Remove the last quotation mark in the statement:

Disp "Hi again

Run the program

The TI-92 displays an error message like the one
shown to the right.
To return to the program and correct the error,
press ¸.
The program is displayed with the cursor on the
line where the error occurred or where the
program has gone wrong.

Unfortunately, error messages are often difficult
to interpret and are sometimes misleading. Even
the cursor position should be regarded only as
indicating the approximate position of the error.
For example:

Problem solving and Program design using the TI-92 9

"Correct the error" by typing the quotation mark
behind EndPrgm where the cursor is displayed .

Run the program again.

"Correct the error" by typing EndPrgm to the end
of the program.

Run the program again.

The program contains no syntax errors!
The PrgmIO screen is displayed with the line
("string"): Hi again↵↵EndPrgm
Note: A string is a sequence of characters

enclosed in quotes that allows the program
to display information or prompts the user
to perform an action.
↵: ¸-symbol.

Example 2: The first statement "Prg" instead
of "Prgm"

Change the first statement "Prgm" to "Prg" and
run the program. The TI-92 displays an error
message. Return to the program.
The program is displayed with the cursor on the
line to the end of the ClrHome statement "where
the error occurred".

Conclusion:
When you try to find the location where the error
occurred. It is mostly not where the cursor stands.
Therefore trace backwards to find the (syntax)
error!!

10 Problem solving and Program design using the TI-92

2.7 Entering a Graphing Program

You can write programs that use the graphing
capabilities of the TI-92.
To start the new program in the Program Editor,
press , select 7:Program Editor, and then select
3:New. Press DD, and type graphit as the name
of the new program variable.
Press ¸ to store the program name and
display the new. program template.
Type the program lines as shown to the right,
making sure to indent for readability. Press
¸at the end of ¸ each line.

This program graphs the function given by the
expression −cos(2x) 2cos(x). The ClrGraph
statement clears any functions that where graphed
with the Graph command. The ZoomStd
statement ensures that the function will be
graphed in the standard viewing window. You
must, however, set the graph mode to
FUNCTION for the program to work correctly.
To do this, press the ¥" to return to the
Home screen, press to check the graph mode, and
set the
mode to FUNCTION, if necessary. You exit the
Mode dialog box by pressing N (or press
¸ twice if you make a change).
Run the program. Type graphit() on the entry line
of the Home screen and press ¸.
The graph of the function whose expression is

−cos(2x) 2cos(x) is displayed in the standard
viewing window.
Hint: If you have previously defined a function or
statistics plot, press ¥# to display the Y=
Editor. Then move to each selected function or
plot and press † to deselect it. This ensures that
only the graph for the function in your program is
displayed.
To turn off All functions, press ‡:All and then
select 1:All Off or deselect all functions from the
Home screen; press †:Other and then select
8:FnOff command. You can also use the FnOff
command in your (graphit) program.

Problem solving and Program design using the TI-92 11

The Mode
Press 3, and change the Graph mode to 3D
Run the program.
The program now returns the graph shown to the
right.

Another example.
Press 3, and change the Graph mode to
POLAR
Run the program.
The program now returns an error due to the
incorrect graph mode.

The program expects the Graph mode
"FUNCTION" (or 3D) but uses POLAR mode and
therefore returns an error.
You can improve your program by including a
line that sets the graph mode to FUNCTION.

Using the setmode(" Graph"," FUNCTION")
Command

Edit the current program to do this.
Press O, select 7:Program Editor, and then
select 1:Current.
Move the cursor to the end of ZoomStd and press
¸ to insert a new blank line.
With the cursor at the beginning of this new blank
line, press the space bar twice for the proper
indentation.
Now press ˆ. The Mode menu is displayed.

Press B to display the Graph submenu.
Select 1:FUNCTION. The command:

setMode(" Graph"," FUNCTION")
is inserted at the cursor into the new line.

Now you are assured that the graph mode is
correct without checking it or setting it yourself
outside the program.

12 Problem solving and Program design using the TI-92

2.8 Listing the programs you have created

You can display a list of the programs you have
created in two ways.

1. Press O, select 7:Program Editor, and

select 2:Open. A dialog box is displayed. The
first program name appears next to the
Variable item followed by an indicating that
there are more programs.

Press DD and then B. The names of your
programs are listed in alphabetical order.

To select a program, move the cursor to
highlight its name and press ¸ . The
program is displayed in the Program Editor.

2. Displaying the VAR-LINK screen by pressing

2°. By default, the VAR-LINK
screen lists all user-defined variables in all
folders and with all data types.
To select a program, type a letter repeatedly
to cycle through the names that start with that
letter, or move the cursor to highlight its
name.

Press ˆ to show the contents of the program,
but you cannot edit the contents from the
VAR-LINK-screen.

Press ¸ to return to the HOME-screen,
ready to run the program.

Problem solving and Program design using the TI-92 13

2.9 Summary of commands

ClrGraph Clears any functions or expressions that were graphed with the

Graph command (See Graph on page 127)
Any previously selected Y= functions will be graphed the next time
that the graph is displayed.

ClrHome Clears the Home Screen; all items stored in the entry() and ans()

Home screen history area.
Does not clear the current entry line.
While viewing the Home screen, you can clear the history area by
pressing ƒ and selecting 8:Clear Home.

ClrIO Clears the Program I/O Screen.

Disp Displays the current contents of the Program I/O screen.

Disp [exprOrString1][,exprOrString2]
 Displays each expression or character string on a separate line of

the Program I/O screen.
 For example:

 If Pretty Print = ON , expressions are displayed in pretty print.

 Disp "Hi again" ¸ returns: Hi again
Disp sin(‹/6) ¸ returns: 1/2

FnOff Deselects all Y= functions for the current graphing mode.
FnOff [1] [, 2] ... [,99] Deselects the specified Y= functions for the current graphing mode.
 For Example:

 FnOff 1,3 deselects Yl (x) and Y3(x).

FnOn Selects all Y= functions that are defined for the current graphing
mode.

FnOn [1] [, 2] ... [,99] Selects the specified Y= functions for the current graphing mode.

Graph expression[,var] Graphs the requested expression / function using the current

graphing mode.
If you omit an optional var argument, Graph uses the independent
variable of the current graphing mode.

 For example:

 Graph sin(t),t¸

NewFold foldername Creates a user-defined folder with the name foldername, and then
sets automatically the current folder to that folder. After you
execute this instruction, you are in the new folder.

setFold(newfolderName) ⇒ oldfolderString
 Returns the name of the current folder as a (oldfolder)string and

sets newfolderName as the current folder. SetFold is a function,
which requires you to enclose the newfoldername in parentheses ().

 Note: The folder newfolderName must exist.

14 Problem solving and Program design using the TI-92

setMode() Sets mode to the new settings. In the Program Editor ˆ: Mode
menu (see also setMode settings on page 135).

ZoomStd Sets the window variables to the standard values, and then updates

the ZoomStd viewing window.
 Standard values for function graphing:

x:[-10,10,1], y:[-10,10,1] and xres=2

2.10 Practical problems

Problem 1
Create a program, which will display a random number between 0 and 10 on the screen.
Note: use rand().

Problem 2
Modify the program made in problem 1 to change the look of the number to seven decimals (for
example 20  20.0000000)
Hint: Display Digits in FIX Format.

Problem solving and Program design using the TI-92 15

3. Program structure

In the previous chapter, we looked at some
statements and put them to work in a simple
program. This and the next chapters cover the
rules governing the structure of programs in more
detail.
Let's quickly review what we've learned about
program structure so far. A program consists of
two distinct parts: the program heading and the
statement part. The program heading's primary
function is to name the program.
The statement part is one or more program
statements that describe the actual work to be
performed-such as adding numbers, making
assignments, and printing information to the
program I/O screen. The statements appear
between the reserved words Prgm and EndPrgm.
This part of the program is also called the main
program.

3.1 Drawing a specific object

The following instructions tell you how to draw a
box. You begin with a program that sets the
values of the Window variables. Finally you enter
a program that draws a box using the specified
Window variable values.

Setting the Values of the Window Variables

1. First, clear the HOME-screen the Y=Editor,

any user-defined variables and reset the
memory to the default settings.

2. Second create a new folder chapter3.
3. To start a new program in the Program Editor,

press O, select 7:Program Editor, and
then select 3:New. Press DD and type
winset as the name of the new program
variable.

4. Press ¸¸ to store program name and
display the new program template.

5. Type the program lines as shown to the right.
(Notice the indentation pattern.) Press ¸
at the end of each line.
To type !, press §.

6. The ¦ symbol indicates a program comment,
which you can use to explain or describe

winset()
Prgm
¨ Set the Window Variables
 0!xmin ¨ Stores 0 in xmin
 15!xmax
 0!ymin
 10!ymax
EndPrgm

16 Problem solving and Program design using the TI-92

various aspects of the program. Any
information to the right of the ¦ is not
executed when you run the program.
Hint: To type ¦, press 2 X.

7. After you have entered all the program lines,
your screen should look like the one to the
right. Now press ¥".

8. To run the program, type winset() and press
¸.

Although Done is displayed on the Home
screen, nothing seems to have happened. This
program changes the Window variable values
for function graphing. To see the results, press
¥$. The values for xmin, xmax,
ymin, and ymax should match the values in
the program.

Drawing the Box

1. Start a new program in the Program Editor,

and name it drawbox.
2. Enter the program lines as shown to the right,

making sure to indent for readability.
3. Press ¥" Type drawbox() and press

¸.

Where is the box located on the screen? How
have the menu items at the top of the screen
changed? How would you get back to the
Home screen?

The box is located toward the lower left part
of the screen. The menu items now relate to
graphing since you are on the Graph screen.
You can return to the Home screen by
pressing ¥".

3.2 Making a program more flexible

When you make a program flexible, it can be
used to solve a greater variety of problems. This
next section shows you how to add program code
that:

• lets the user choose the exact location of the

box.

drawbox()
Prgm
¨ Set the Window Variables
 0!xmin ¨ Stores 0 in xmin
 15!xmax
 0!ymin
 10!ymax
 ClrGraph ¨ Clears the Graph Screen
 ClrDraw ¨ Clears the Drawings
 setMode("Graph","FUNCTION")
¨ Draw the Box
 Line 2,3,8,3 ¨ Draws a Line Segment
 Line 8,3,8,5
 Line 8,5,2,5
 Line 2,5,2,3
EndPrgm

(8,5) (2,5)

(8,3) (2,3) 1st line

2st line 4st line

3st line

Problem solving and Program design using the TI-92 17

• lets the user choose the Window variable
values for the screen and choose the exact
location of the box.

• lets the user choose the size of the box and
choose the exact location of the box.

Before you begin the new program, compare it to
the drawbox program.

• You can copy lines from one program to

another.
The TI-92 allows you to cut, paste, and copy
characters with
¥X, ¥V, or ¥C. You can also use the
Mor the 0 keys to help you edit on the
entry line.

• You can save the current program, for

example drawbox, under a different name

then open the new program and make a few
changes.
Choose ƒ select 2:Save Copy As...
and type for example placebox, open the
"new" program placebox and make the
necessary changes.

Let the user choose the location of the box

1. Start a new program in the Program Editor

and name it placebox.
2. Enter the program lines as shown to the right.

Note: In this book, when a line is too long to
fit on the screen as in the eighth program line
here, it is continued and indented on the next
line. However, you should type the line
without breaking it and let the calculator
wrap the line.

3. Run the placebox program.
4. Enter the x- and y-coordinates of the lower

left corner when requested. Think about the
currently defined Graph screen and where
you might locate the corner in such a way that
the entire box is displayed.
Was the box displayed where you expected?

placebox()
Prgm
¨ Draw a Box at Location You Choose
¨ Set the Window Variables
 0!xmin ¨ Stores 0 in xmin
 15!xmax
 0!ymin
 10!ymax
¨ Choose the Location
 Input "Enter x-coordinate of lower
 left corner",x
 Input "Enter y-coordinate",y
 ClrDraw ¨ Clears the Drawings
 setMode("Graph","FUNCTION")
¨ Draw the Box
 Line x,y,x+2,y ¨ Draws a Line
 Line x+2,y,x+2,y+2
 Line x+2,y+2,x,y+2
 Line x,y+2,x,y
EndPrgm

The Cut, Copy, and Paste Functions

For example,
1) Press x Z 2 | 3x | 4 ¸
2) To cut -3x from this expression, move

the cursor to the right of 2. Press and
hold down the shift key ¤ and press
three times to highlight -3x. Now press
¥ X ¸

3) On a cleared entry line, press ¥ V to
retrieve this expression from the
buffer where it was stored.

Note: You saved the expression -3x when
you pressed ¥ X. The delete (¥ X), paste
(¥ V), and copy (¥ C) features of the
TI-92 are similar to the cut and paste
features on most computer word processors.

18 Problem solving and Program design using the TI-92

Letting the user choose the window variable
values and the box location

Let us continue to extend this example. Suppose
you would like to set up a specific Graph screen

while the program is executing and then draw the
box on that screen. Once again, think about how
you can accomplish this before you enter the
program lines.

You need a request to the user to enter each of the
main Window variable values: xmin, xmax,
ymin, and ymax. Then you must be able to enter
the desired values.

The following program extends the placebox
program. As you enter the program, you can
either type the commands Input, Line, and
CIrDraw from the keyboard or paste them in
from the appropriate menu. For example, to paste
the Input command in your program, place the
cursor at the appropriate position, press …, and
then select 3:Input.

1) Start a new program in the Program Editor

and name it chuzwin.
2) Enter the program lines as shown to the right.

Notice that the four Input lines for the
Window variable values are almost identical.
Therefore, after typing the first one, you could
follow these steps to copy and edit it instead
of typing the other three lines.
a) Type the first Input line and then move

the cursor to the beginning of the line.
b) Hold down ¤ and press D once. This

highlights the line.
c) Press ¥ C to copy the line.
d) Move the cursor to the beginning of the

next line.
e) Press ¥ V to paste the copy of the line

here.
f) Edit the line to match the program at the

right.
g) Repeat these steps for the other two Input

lines.
Enter the remaining program lines.

3) Return to the Home screen, and run the
chuzwin program.

chuzwin()
Prgm
¨ A Box at a Location You Choose
¨ Choose your Window Values
 Input "Enter xmin value",xmin
 Input "Enter xmax value",xmax
 Input "Enter ymin value",ymin
 Input "Enter ymax value",ymax
¨ Choose the Location
 Input "Enter x-coordinate of lower
 left corner",x
 Input "Enter y-coordinate",y
 CIrDraw ¨ Clears the Graph Screen
¨ Draw the Box
 Line x,y,x+2,y ¨ Draws a Line
 Line x+2,y,x+2,y+2
 Line x+2,y+2,x,y+2
 Line x,y+2,x,y
EndPrgm

Problem solving and Program design using the TI-92 19

Letting the User Choose Box Size and
Location

Are there other ways to extend the program?
Perhaps you would like to be able to choose the
heigth and width of the box along with the
placement of the bottom left corner of the box. In
addition, suppose you would like to ensure that
the entire box actually appears in the Graph
screen.

Again, think about how you can accomplish these
tasks before typing in the program.

1. Start a new program in the Program Editor

and name it chuzbox.
2. Enter the program lines as shown to the right.
3. Return to the Home screen, and run the

chuzbox program.

Experiment with any values you desire for the
width and height of the box. Do the same for the
location of the lower left corner.

Was the entire box displayed in the Graph
screen? Can you choose values for the
dimensions of the box and location of the corner
whereby only a portion of the box is drawn in the
Graph screen? Try several combinations.

By thinking about what the program does, you
can be sure that the entire box is always displayed
in the Graph screen since the Window variable
values are determined by the numbers you put in
enter.

By setting the Window values as indicated, the
Graph screen is always at a distances of 4 units
from the box's edges

chuzbox()
Prgm
¨ Choose a Box Size and its Location
¨ Program also Determines View Window
 ClrIO ¨ Clears the IO-Screen
¨ Choose your Box Size
 Input "Enter width of box",x
 Input "Enter height of box",y
¨ Choose the Location
 Input "Enter x-val of low left
 corner",xx
 Input "Enter y-val of corner",yy
¨ Set the Window Values
 xx-4!xmin
 xx+x+4!xmax
 yy-4!ymin
 yy+y+4!ymax
 ClrDraw ¨ Clears the Graph Screen
¨ Draw the Box
 Line xx,yy,xx+x,yy ¨ Draws Line
 Line xx+x,yy,xx+x,yy+y
 Line xx+x,yy+y,xx,yy+y
 Line xx,yy+y,xx,yy
EndPrgm

20 Problem solving and Program design using the TI-92

3.3 Courteous programming: getMode &
setMode

If you need to change mode settings within your
program, consider using the getMode and
setMode functions to restore your TI-92's
previous settings.
(If you are using someone else's TI-92; you can
leave the settings on the calculator as you found
them.) For an introduction to getMode and
setMode, see page 126 and 135.

Preserving Mode Settings
The function getMode and setMode can be used
together in a program to preserve the TI-92’s
mode settings. Use getMode to obtain the mode
settings when the program begins and setMode to
restore them before the program ends.

This program design as shown to the right
illustrates the use of getMode and setMode:
Call getMode("ALL") to obtain a list of the
current mode settings as they exist before the
program begins executing. In the example above,
the list of mode settings is stored (!) in
prevmode.
While the program is executing, it is free to
change mode settings as needed for its proper
operation.
Before the program terminates, restore the mode
settings preserved in prevmode by calling
setMode(prevmode).
Because prevmode is a local variable, other
programs cannot unintentionally change it. If
other programs save and restore mode settings in
this fashion, your program can call other
programs as subroutines without concern that
mode settings will not be restored correctly.

Temporary Mode Changes
The function setMode changes one or more
mode settings. It returns a string (or list of
mode/settings string pairs) indicating the previous
mode state before the new mode settings are
applied. This feature allows your program to
temporarily change a mode setting, execute a few
program statements, and then restore the previous
mode setting.

ProgGet()
Prgm
 getMode("ALL")!prevmode
EndPrgm

Sample_1()
Prgm
 ClrIO
 Disp getMode("ANGLE")
¨ Need degree mode temporarily
 setMode("ANGLE","DEGREE")»saveang

 Disp getMode("ANGLE")
 Disp saveang
 - - - - - - - - - - - -
 - - - - - - - - - - - -
 - - - - - - - - - - - -
¨ restore previous angle mode
 setMode("ANGLE",saveang)

 Disp getMode("ANGLE")

EndPrgm

ProgSet()
Prgm
 setMode(prevmode)
EndPrgm

Problem solving and Program design using the TI-92 21

3.4 Summary of commands

0 Deletes the character to the left of the cursor.

¥ C Copies highlighted characters.

¥ V Pastes highlighted characters.

¥ X Cuts highlighted characters.

¦ [text] press 2 X A comment symbol ¦ lets you enter a remark

in a program.
When you run the program, all characters following ¦ are ignored;
comments and are not executed.

a ! b a § b Stores the value on the left (a) in the variable on the

right (b):

Circle x,y,r Draws a circle with its center at (x,y) and radius of r.

ClrDraw Clears the drawing from the screen.

getMode(modeNameString) ⇒ String
 If the argument is a specific mode name, returns a string containing

the current setting for that mode.
 For example:
getMode("ALL") ⇒ String

 getMode("angle") ¸ returns: "RADIAN"

 If the argument is "ALL" , returns a list string pairs containing the
settings of all the modes.

 For example:

 Note 1: Your screen may display different mode settings.
Note 2: If you want to restore the mode settings later, you must
store the getMode("ALL") result in a variable, and then use setMode
(see page

 getMode("ALL") ¸ returns:
{"Graph" "FUNCTION" "Display Digits""FLOAT 6" "Angle"
"RADIAN" "Exponential Format" "NORMAL" "Complex Format"
"REAL" "Vector Format" "RECTANGULAR" "Pretty Print" "ON"
"Split Screen" "FULL" "Split 1 App" "Home" "Split 2 App" "Graph"
"Number of Graphs" "1" "Graph 2" "FUNCTION" "Split Screen
Ratio" "1: 1" "Exact/ Approx" "AUTO"}

135) to restore the modes.

Input [promptString,] var pauses the program, displays promptString on the Program I/O

screen, waits for you to enter an expression, and stores the
expression in variable var.
If you omit promptString , "?" is displayed as a prompt.

Line xl,yl,x2,y2 Draws a line between the points (xl,y1) and (x2,y2).
Prgm EndPrgm Designates the beginning and end of a program.

22 Problem solving and Program design using the TI-92

setMode(list) list contains pairs of keyword strings.
Sets mode all at once to the new setting This is recommended for
multiple-mode changes.

setMode(var) Use setMode(var) to restore settings saved with
getMode ("ALL ")!var.

For a listing of mode names and possible settings, see setMode on
page 135.

Problem solving and Program design using the TI-92 23

3.5 Practical problems

Think about how you might solve the following exercises before you write the program lines. In
addition, run each program to be sure it gives the desired results.

Problem 1
Write a program that calculates and displays the value of the combined resistance Rv of three
parallel resistance's R1, R2 and R3.
Request the user to enter each value of the resistances.

Hint: the formula for three parallel resistance is:
v 1 2 3R

1 1 1 1
R R R

= + + +

Note: R1 is a system variable.

Problem 2
Modify the winset program by setting the minimum values to the negatives of the maximum values.
Run the program after you modify, it, and check to see that the Window variable values have
changed to the values in your modified program.
To be checked from the Graph screen where the origin is in the center.

Problem 3
Modify the drawbox program in such a way that the width of the box is four times the height. The
values you use should ensure that the entire box is displayed in the Graph screen.

Problem 4
Modify the drawbox program in such a way that the box is a square and within the box is drawn a
circle attached to each side of the box.

Problem 5
Modify the placebox program in such a way that each side of the box is six units in length.

Problem 6
Modify the chuzbox program in such a way that the rectangle as well the diagonals of the rectangle
are drawn in the Graph-screen.

Problem 7
Modify the chuzbox program in such a way that a circle with center at (a,b) and radius r is drawn
and within the circle the axes attached to the circle.

Problem solving and Program design using the TI-92 25

4. Top-down Design & Program
Design

4.1 Software Development Method

Program design is a problem solving activity. If
you are a good problem solver, you have the
potential to become a good program designer.
One goal of this book is to help you improve your
ability to solve problems.
We introduce a systematic approach to solving
program design problems called the software
development method and show you how to apply
it.

The Software Development Method
1. Specify the problem requirements

:

2. Analyze the problem
3. Design the algorithm to solve the problem
4. Implement the algorithm
5. Test and verify the completed program
6. Maintain and update the program.
The steps in the software development method
are presented below in more detail.

PROBLEM
Specifying the problem requirement forces you to
state the problem clearly and unambiguously and
to gain a clear understanding of what is required
for its solution. Your objective is to eliminate
unimportant aspects and focus on the main and
problem. This may not be as easy as it sounds.
You may find you need more information from
the person who posed the problem.

ANALYSIS
Analyzing the problem involves describing the
problem in basic ingredients:
(a) inputs, that is, the data you have to work with;
(b) outputs, the desired results; and
(c) any additional requirements or constraints the

problem presents you with.
At this stage, you should also determine the
required format in which the results should be
displayed and develop a list of problem variables
and their relationships. These relationships may
be expressed as formulas.

PROBLEM

ANALYSIS

DESIGN

IMPLEMENTATION

TESTING

MAINTENANCE

26 Problem solving and Program design using the TI-92

If the steps 1 and 2 are not done properly, you
will solve the wrong problem. Read the problem
statement carefully, first to obtain a clear idea of
the problem and second determine the input and
outputs. You may find it helpful to underline
phrases in the problem statement that identify the
inputs and outputs, as in the following problem
statement:

Determine the total cost of apples given the
number of pounds of apples purchased and
the cost per pound of apples

.

Problem Inputs:
• quantity of apples purchased (in pounds)
• cost per pound of apples (in dollars per

pound)
Problem Output
• total cost of apples (in dollars)

Once you know the problem inputs and
outputs, develop a list of formulas that
specify relationships between them. The
general formula:
total cost =

unit cost * number of units
computes the total cost of any number of
items purchased. Substituting the variables
for our particular problem yields the formula:
total cost of apples =

cost per pound * pounds of apples

DESIGN
Designing the algorithm to solve the problem
requires you to write a step-by step procedure
-the algorithm- and then verify that the
algorithm solves the problem as intended. Writing
the algorithm is often the most difficult part of the
problem solving process. Don't attempt to solve
every detail of the problem initially; instead,
discipline yourself to use top-down design. In
top-down design, you first list the major steps, or
subproblems, that need to be solved, then solve
the original problem by solving each of its
subproblems. Most computer algorithms consist
of at least the following subproblems.

Problem solving and Program design using the TI-92 27

Algorithm for a Program design Problem
1. Read the data
2. Perform the computations.
3. Display the results.

Once you know the subproblems, you can attack
each problem individually.
You may be familiar with top-down design if you
use outlines when writing term papers. Your first
step is to create an outline of the major topics,
which you refine then by dividing each major
topic into several subtopics. Once the outline is
complete, you begin writing the text for each
subtopic.

Desk checking is an important part of algorithm
design though often. To desk check an algorithm,
carefully perform each algorithm step (or its
refinements) just as a computer would and verify
that the algorithm works as intended. You'll save
time and effort if you locate algorithm errors
early in the problem solving process.

IMPLEMENTATION
Implementing the algorithm involves rewriting
the algorithm of a program. You must convert
each algorithm step into one or more statements
in a programming language.

Structured programming is a disciplined approach
to program design that results in programs that
are easy to read and understand and less likely to
contain errors. The emphasis is on following
systematic program style guidelines (which is
stressed in this book) to write program code that
is clear and readable. Obscure tricks and
programming shortcuts are strongly discouraged.

TESTING
Testing and verifying the program requires
testing the completed program to verify that it
works as desired. Don't rely on just one test case.
Run the program several times using different
sets of data, making sure that it works correctly
for every situation in the algorithm.
Especially when you test for strange cases, a
boundary values in your problem, you will see if
your problem design is robust. In the example of
the total cost of apples a robust designed program

READ THE DATA

PERFORM THE

COMPUTATIONS

DISPLAY THE

RESULTS

28 Problem solving and Program design using the TI-92

also returns answers to the questions what of 0
pounds of apples cost.

MAINTENANCE
Maintaining and updating the program involves
modifying a program to remove previously
undetected errors and to keep it up to date as
government regulations or company policy
change.

4.2 Top-Down Design

Often the algorithm needed to solve a problem is
more complex than those we have seen so far and
the programmer has to break up the problem into
multiple subproblems to develop the program
solution. In attempting to solve a subproblem at
one level, we introduce new subproblems at
lower levels. This process, called top-down
design, proceeds from the original problem at the
top level to the subproblems at each lower level.
The splitting of a problem into its related
subproblems is analogous to the process of
refining an algorithm
A major ingredient of top-down

.
program design

is the subroutine

. In this section, you will use
top-down program design and learn how
subroutines can help you subdivide any problem
into smaller parts which are easier to manage.

Top-down program design is learned
appropriately by applying it to several programs.
In order to learn how to use it you need to solve
different types of problems.

4.2.1 Drawing a House: An example

Problem
You want to draw a house on the screen as shown
to the right. The user of the final program must be
able to choose the position (coordinates) of the
house and the house should always be visible on
the screen.

To deal with this problem we use the Software
Development method described in section 4.1.

Note: A subroutine is a collection of
programming statements designed to
perform a specific task.

Problem solving and Program design using the TI-92 29

Analysis
The house is formed by a frame (rectangle) with a
roof (triangle without its base) on top. Thus we
can draw the house using six lines.

When drawing these six lines we have to consider
the other problem definitions given at the start:
1. The user must be able to choose the position

of the house.
2. The user must be able to choose the size of

the house.
3. The house must be completely visible on the

screen.
4. Make the drawing of the house.

The analysis can now be continued by solving
each of the questions above by treating them as
separate (sub)problems.

Ad 1. One option to make the user choose the
position of the house is by making use of
variables. For instance by choosing the left
bottom corner as a starting coordinate (x,y) for
the house, the position of the house will be fixed
for every value of x and y.

Ad 2. If we know the starting point of the house
is coordinate (x,y), the width and height can also
be set using variables. Let’s choose variable w for
the width of the house and h for the height of the
frame of the house.
The top of the roof we choose as 0.5*h above the
frame thus making the house 1.5*h high.

The house can then be expressed in variables
instead of numbers for all coordinates of the
house. See the drawing to the right.

Ad 3. Visualizing the house on the screen for
each chosen coordinate is also possible now by
adjusting the window settings relative to the
variables x,y and w,h.

Design
A possible design of the program is shown to the
right. The subproblems defined in the analysis
phase are treated in the design as separate
routines, which are sequentially solved. Starting
with the location (coordinates) of the house to

House()
Prgm
¨ This program draws a house

 Input of location of the house
 Input of width and height of the
 house
 Set window variables
 Draw House

EndPrgm

x,y

x,y+h

x+0.5w,y+1.5h

x+w,y

30 Problem solving and Program design using the TI-92

finally drawing the house at the end of the
program.

Implementation
The next step in the software development
method is to write small programs (subroutines)
to solve each subproblem of the program as
defined in the design and analysis phase. To
structurize the programming and to be able to
identify the separate subproblems. We will use a
new programming technique consisting of
subroutines.
Subroutines are “small” programs wich are
incorporated in the program completely.
Subroutines are generally placed in top of the
program using the
Define subroutine_name()=Prgm
Prgm..
......
......
EndPrgm
commands.
The subroutine will not be executed until the
subroutine name is called for in the main routine.
The main routine is in fact the actual program,
which consists primarily of calls for a number of
subroutines (subprograms) and perhaps a few
extra commands.

An example of a program with subroutines is
shown to the right. The command Local is used to
let the subroutine exist only whitin the program
when the program is executed. At the end of the
program execution the subroutine will be erased
from memory. The command Define in
conjunction with Prgm...Endprgm declare the
subroutine. It will not execute the subprogram. In
a later stadium the subprogram can be called or
executed by calling the subroutine name in the
main routine. Like any program the subroutine
must be defined and called using brackets like
normal programs. For instance the command
subrout1() called in the main routine will execute
the subroutine subrout1().

Now we will write our program House().
Start this program in the Program Editor and type
the program listing for the location subroutine,
making sure to indent for readability. Press Enter
at the end of each line.

Example()
Prgm
¨ This program is an example of using
subroutines.

¨ ****** Subroutines *******

Local Subrout1
Define Subrout1()=Prgm
 ¨ Contents of subroutine are
 program lines
 ...line 1
 ...line 2
 ...etc.
EndPrgm

Local Subrout2
Define Subrout2()=Prgm
 ¨ Contents of subroutine are
 program lines
 ...line a
 ...line b
 ...etc.
EndPrgm

¨ ****** Main Routine ******

 ClrIO
 ¨ Calling the subroutines
 Subrout1()
 Subrout2()

EndPrgm

Problem solving and Program design using the TI-92 31

Input of the location of the house
Using the analysis made earlier, it is now easy to
think of a way to ask for the location of the
house. The subroutine we will call Location()

Input of width and height of the house
Now enter the subroutine as shown on the right in
order to ask the user for the width and height of
the house.

Set window variables
To place the house in the center of the window
you must calculate the exact coordinates of the
house and add some extra space on all sides as
shown in the subroutine to the right. In this
example we choose that the house is centered in
the screen keeping a distance of 0.5*w to the left
and right and 0.5*h to the top and bottom of the
screen.

Draw the house
Now enter the drawing subroutine as shown to
the right. These subroutines follow the window
subroutine. As you can see all the line commands
are completely described in the variables x,y,w
and h

The Main Routine
All subproblems are solved and you are now
ready to write the main routine in which all
subroutines are activated cnsecutively. Your
design helped you do this quickly. Use a lot of
comment to describe the meaning of the
subroutines.

¨ Subroutine Width and height Local size
 Define size()=Prgm
 Input "Width of house",w
 Input "Height of house",h
 EndPrgm

House()
Prgm
¨ This program draws a house

¨ Subroutine Location
 Local location
 Define location()=Prgm
 Input "X-coord. of lower left corner",x
 Input "Y-coord. of lower left corner",y
 EndPrgm

¨ Subroutine Set window variables
 Local Window
 Define Window()=Prgm
 x-0.5*w»xmin
 x+1.5*w»xmax
 y-0.5*h»ymin
 y+2.0*h»ymax
 Endprgm

¨ Subroutine Draw house
 Local drwhouse
 Define drwhouse()=Prgm
 Line x,y,x+w,y
 Line x,y,x,y+h
 Line x,y+h,x+w,y+h
 Line x+w,y,x+w,y+h
 Line x,y+h,x+0.5*w,y+1.5*h
 Line x+w,y+h,x+0.5*w,y+1.5*h
 EndPrgm

¨ ***** MAIN ROUTINE *******

 Location() ¨ Location subroutine
 Size() ¨ Size subroutine
 Window() ¨ Settings subroutine
 Drwhouse() ¨ Draw house subroutine

EndPrgm

32 Problem solving and Program design using the TI-92

The complete house program is shown to the
right.

Review the house program. Notice how the
comment and indentation help you to follow the
flow of the program.

The last EndPrgm statement was placed in the
program template when you created the house
program.

Think about how the program deals with the
values entered by the program user and how these
values influence the window settings and position
of the house on the screen.

To run the program return to the Home screen
and type House() at the command line. Enter
different values for the x, y, w and h variables
and interpret the differences between the output
(the picture of the house) for these values.

Testing
In the next the program will be tested. In this
phase you will try out the program several times
using different sets of values to look for any
strange output or errors you did not expect when
you wrote the program. If the program does not

House()
Prgm
¨ This program draws a house

¨ Subroutine Location
 Local location
 Define location()=Prgm
 Input "X-coord. of lower left corner",x
 Input "Y-coord. of lower left corner",y
 EndPrgm

¨ Subroutine Width and height
 Local size
 Define size()=Prgm
 Input "Width of house",w
 Input "Height of house",h
 EndPrgm

¨ Subroutine Set window variables
 Local Window
 Define Window()=Prgm
 x-0.5*w»xmin
 x+1.5*w»xmax
 y-0.5*h»ymin
 y+2.0*h»ymax
 Endprgm

¨ Subroutine Draw house
 Local drwhouse
 Define drwhouse()=Prgm
 Line x,y,x+w,y
 Line x,y,x,y+h
 Line x,y+h,x+w,y+h
 Line x+w,y,x+w,y+h
 Line x,y+h,x+0.5*w,y+1.5*h
 Line x+w,y+h,x+0.5*w,y+1.5*h
 EndPrgm

¨ ****** MAIN ROUTINE ******

 ¨ Calls the subroutines to be executed
 Location() ¨ Location subroutine
 Size() ¨ Size subroutine
 Window() ¨ Settings subroutine
 Drwhouse() ¨ Draw house subroutine

EndPrgm

Problem solving and Program design using the TI-92 33

¨ ******* MAIN ROUTINE ******

 ¨ Clear the IO and graph screen
 ClrIO
 ClrGraph
 ClrDraw
 FnOff

 ¨ Calls the subroutines to be executed
 Location() ¨ Location subroutine
 Size() ¨ Size subroutine
 Window() ¨ Settings subroutine
 Drwhouse() ¨ Draw house subroutine

 ¨ Clears variables from memory
 Delvar x,y,w,h

EndPrgm

work due to an error, you will have to walk
through your program steps to locate the error in
the program.

Maintenance

The last step in solving the problem is
maintenance. In this phase you will dot your i’s
and cross your t’s to your program. You will try
to make the program look good and look the same
each time you start the program.

For instance if you run the house program several
times you will notice that the input statements
which ask the coordinates and size of the house
are not erased from the PrgmIO screen.
If you have functions defined in the Y-editor they
are also shown in the graph screen. This problem
can solved by adding the ClrIO, ClrGraph,
ClrDraw an FnOff statements in the main routine

Furthermore, you will want to get rid of any
variables like x,y,h and w created while using the
program but which are not necessary outside the
program. The variables can be deleted inside the
program by using the Delvar variable- name
command as last line in the main routine.

The main routine after maintenance is shown on
the right.

34 Problem solving and Program design using the TI-92

4.3 Summary of commands

Define progName() = Prgm
 block of statements
EndPrgm Creates progName as a program or subprogram. progName() can

execute a block of multiple statements.
block can also include expressions and instructions without
restrictions.

DelVar var1 [,var2][,var3] Deletes the specified variables from memory.

Local var1[,var2][,var3]
 Declares the specified vars as local variables. Those variables exist

only during evaluation of a program or function and are deleted
when the program or function finishes execution.

 Note: Local variables save memory because they only exist
temporarily. Also, they do not disturb any existing global variable
values. Local variables must be used for temporarily saving values
in a multiline function since modifications on global variables are
not allowed in a function.

Problem solving and Program design using the TI-92 35

4.4 Practical problems

Now try the following exercises. Be sure to use
the top-down program design techniques and
indentation formatting you learned in this
chapter.

Problem 1
Add a subroutine to draw a window and door in
the house program. One possible placement for
a window and door is shown to the right.

Problem 2
Modify the house program in such a way that
the house is drawn "three-dimensional" as
shown to the right.

Problem 3
Modify the house program in such a way that
the house, with a window and door, becomes a
small flat with two floors " as shown to the
right.

Problem 4
Use top-down program design to draw a "stick
figure" as shown to the right.

Problem 5
Write a program design that can be used to
develop a program that draws a picture of a car.

Problem 6
Write a program design that can be used to
develop a program that draws a picture of an
airplane viewed from the top.

36 Problem solving and Program design using the TI-92

Problem 7
The program below draws a sailing ship.

Sailboat()
Prgm
¨ Draws a sailboat
 Local winset
¨ Sets Window Variables
 Define winset()=Prgm
 ClrDraw
 0!xmin
 100!xmax
 0!ymin
 100!ymax
 EndPrgm
¨ Draws the Hull
 Local hull
 Define hull()=Prgm
 Line 20,50,70,50
 Line 70,50,65,30
 Line 65,30,30,30
 Line 30,30,20,50
 EndPrgm
¨ Draws the Mast
 Local mast
 Define mast()=Prgm
 Line 50,50,50,80
 EndPrgm
¨ Draws the Sail
 Local sail
 Define sail()=Prgm
 Line 50,55,35,55
 Line 35,55,50,80
 Line 50,80,60,55
 Line 60,55,50,55
 EndPrgm
¨ ****** MAIN ROUTINE ******
winset()
 hull()
 mast()
 sail()
EndPrgm

Modify the sailboat program in such a way that
the boat looks like a cabin cruiser. One possible
cabin cruiser is shown to the right.

Problem 8
Write a program that draws first a "unhappy
face" and next the "happy face" as shown to the
right.

Problem solving and Program design using the TI-92 37

5. Selection Control Structures

Program design provides control structures;
special statements that divert executions from the
usual top to bottom sequence.
Some problem solutions require that choices are
made between alternative steps, for which some
statements may or may not be executed,
depending if a certain condition (or Boolean
expression) is true or false. A selection control
structure chooses which alternative to execute.
The basic condition execution consists of an
If-statement. The if-statement determines which
of several alternatives executes in a particular
situation.
The If-statement has a number of extended
forms that are presented in the next sections.

5.1 The If…Then…EndIf statement

The figure on the right is a flowchart of the
If…Then…EndIf statement.
A flowchart is a diagram that shows the step by
step execution of a control structure (or a
program fragment).
The If condition Then statement(s) has one
alternative; a sequence of one or more
statement(s).

You can select the If...EndIf structures from the
Control menu in the Program Editor by pressing
„ and selecting 2:If...EndIf, or you can type it.

5.1.1 Order a pair of data values: An
example
In many program design problems, you must
order a pair of data values in memory in such a
way that the smaller value is stored in one
variable (say, X) and the larger value in another
(say, Y).
We can use the If condition Then statement(s) to
rearranges any two values stored in X and Y in

Boolean expression

A Boolean expression represents a
logical condition, which is either
true or false.

Then
(true)

If
condition

Statement(s)

Statement(s)

EndIf

(false)

38 Problem solving and Program design using the TI-92

such a way that the smaller number is in X and
the larger number is in Y.
If the two numbers are already in the proper
order, the statement(s) is not executed.
Although the values of X and Y are being
switched, an additional variable, Temp, is needed
to store a copy of one of these values.
The table shown on the right simulates the
execution of this if statement when X is 45 and Y
is 7. Each line shows the part of the if statement
that is being executed, followed by its effect. If
any variable gets a new value, its new value is
shown on that line. If no new value is shown, the
variable retains its previous value.
The last value stored in X is 7, and the last value
stored in Y is 45.

Now suppose that X is 25 and Y is 8.

1. Start a new program and name it orderxy.
2. Press ¸ to store the program name and

display the new program template.
3. Type the program lines shown to the right,

making sure to indent for readability. Press
¸ at the end of each line.

4. Run the orderxy program.

Note: The If…condition…one single
When the condition is true and you only have to
execute

-statement.

one single statement

 then you may omit
the reserved words "then" and "EndIf".

5.1.2 Is the number an integer? : An example
In mathematics, integer numbers are positive or
negative whole numbers. An integer contains
neither a decimal point nor an exponent. Thus an

Step by step simulation of if statement

Statement x y temp Effect
 45 7
if x>y then 45>7 is

true
x!temp 45 stores old

x in temp
y!x 7 stores old

y in x
temp!y 45 stores

temp=old x
in y

--EndPrgm

Statement x y temp Effect
 25 8
if x>y then 8>25 is

false
 25 8
--EndPrgm

orderxy()
Prgm
¨ Order a pair of data values
 ClrIO
 Input "Enter the first number:",x
 Input "Enter the second number:",y
¨ Rearrange if necessary
 If x>y then
 x!temp ¨ stores old x in temp
 y!x ¨ stores old y in x
 temp!y ¨ stores temp=old x, in y
 EndIf
 Disp "The larger value = ", y
 Disp "The smaller value = ", x
EndPrgm

(true) If
condition

One single
Statement

Statement(s)

(false)

Problem solving and Program design using the TI-92 39

integer number is simply a sequence of digits,
preceded (optionally) by a sign.

Suppose that you want to find out if a number is
an integer or not.
See the program lines as shown to the right.
The function iPart(number) returns the integer
part of the number.
If the integer part of x is not equal x then "not" is
displayed and on the next line "integer".
In the integer part of x is equal x then "not" is not
displayed.

5.2 The If…Then…Else…EndIf statement
Unlike the previous example, there are times
when you must choose between two different
options, rather than simply choosing or ignoring
an option.

5.2.1 The absolute value of a number: An
example

The absolute value of a number X is the positive
value of X, whether it is originally negative or
positive. For example +5 stays +5 and –5
becomes +5.
Suppose that you want to define the absolute
value function of a random number. This can be
done by using the If...Then...Else...EndIf
statement (instead of relying on the abs() function
available on the TI-92)

1. Start a new program in the Program Editor

and name it absvalue.
2. Enter the program lines as shown to the right.

To type the "greater than or equal to" symbol,
press 2ÃÁ or ¥Ã or press 2I,
select 8:Test, and select 3:≥.

3. Run the program.

If x is greater than or equal to zero, the Then
statement is executed, and AbsX is x itself; but if
x is less than zero, the Else statement is executed,
and AbsX is the opposite of x.

absvalue()
Prgm
¨ Calculates the absolute value
 Input "Enter a number:",x
¨ Check if x ≥ 0
 If x≥0 Then
 x!AbsX
 Else
 -x!AbsX
 EndIf
 Disp "Absolute value of",x,"is",AbsX
EndPrgm

Integer()
Prgm
¨ Calculates if number is integer
 Input "Enter a number:",x
¨ Check if "integer part" ≠ x
 If iPart(x)≠x
 Disp "not" ¨ one single statement
 Disp "an integer"
EndPrgm

If
condition

Then
(true)

Else
(false)

Statements Statements

Statements

EndIf

40 Problem solving and Program design using the TI-92

5.2.2 Rental Car Pricing: An example

Suppose you are interested in renting a car for the
summer, and you want to choose between an
economy car at $20 a day or a midsize car at $30
a day. You want to compare the costs of the two
cars if you're renting them for a specific number
of day's (N).
You can use the If...Then ...Else...EndIf structure
to solve this problem.
Start a new program in the Program Editor and
name it rentcar1. Assume that:
Choice=1 for an economy car and
Choice=2 for a midsize car,
and enter the program lines as shown to the right.

5.3 The If…Then…ElseIf…EndIf
statement

Let's look at the rentcar1 example.
What if Choice is equal to a number other than 1
or 2, for example 3 or 1.2?
The statements above would still calculate a cost
of $30 a day!

An extension of the If ... Then ... Else ... EndIf
structure, the If…Then…ElseIf…EndIf
statement will take care of these difficulties and
give you as many options as you need.

Look at the flowdiagram shown on the right to
see if you can figure out how to correct the
problem.

Now modify the rentcar program as shown on the
next page.

rentcar1()
Prgm
¨ Rental Car Pricing
¨ Compute the Rental Cost
¨ Choose type of car
 Disp "Enter car choice"
 Disp "1=Economy, 2=Midsize"
 Input "Give Choice:",choice
 Input "Enter Renting days",n
 If choice=1 Then
 20*n!cost
 Else
 30*n!cost
 EndIf
 Disp "The total cost is:",cost
EndPrgm

If
condition

Then
(true)

ElseIf S2

S1

Then
(true)

S3 ElseIf

Then
(true)

ElseIf

Sn+1

Else
(false)

Sn

EndIf

Then
(true)

(false)

(false)

(false)

Si ElseIf

Then
(true)

Problem solving and Program design using the TI-92 41

What's happening here?

If Choice=1, the cost is figured at $20 a day.
If Choice≠l, the program goes to the second
condition to see if Choice=2; if so, the cost is
equal to $30 a day.
If Choice≠1 AND Choice ≠2, the program goes to
the third condition to see if Choice=3; if so, the
cost is equal to $40 a day.
If Choice ≠1 AND Choice ≠2 AND Choice ≠3
AND Choice ≠4, the program goes to the Else
statement and assigns an negative value –1 to
Cost.
Knowing that Cost is always positive you can use
the negative value of Cost as an "error statement".

5.4 Top-Down Program Design

Now, let's discuss how you could change the
statements in the rentcar program to use the top-
down program design and block structure ideas
from chapter 4.

You may wonder why you would want to do this
with such a simple program. After all, this
problem is easy to program directly without a
top-down approach as shown in rentcar2(). Resist
the temptation to skip the top-down approach
even in the easiest program design problems. The
thinking process you will develop can pay big
dividends when you work on more challenging
problems. By practicing these structured
programming skills, you will become adept at
solving complex problems more easily.

rentcar2()
Prgm
¨ Rental Car Pricing
¨ Compute the Rental Cost
¨ Choose type of car
 Disp "Enter car choice"
 Disp "1=Economy, 2=Midsize"
 Disp "3=Full size, 4=Sports car"
 Input "Give Choice:",choice
 Input "Enter Renting days",n

¨ Check for the correct choice
 If choice=1 Then
 20*n!cost
 ElseIf choice=2 Then
 30*n!cost
 ElseIf choice=3 Then
 40*n!cost
 ElseIf choice=4 Then
 50*n!cost
 Else
 ¨ invalid choice, cost always ≥ 0
 -1!cost
 EndIf

 If cost≥0 Then
 Disp "the total cost is:",cost
 Else
 Disp "Invalid choice"
E dP

42 Problem solving and Program design using the TI-92

Completing the Rental Car Program

A program is made up of three parts:
1. an input block,
2. an action (calculation) block, and
3. an output block.
You could represent these three tasks for this
program in a design as shown on the right. By
breaking down the problem into smaller parts,
you can focus on each task separately.

Recall from Chapter 4 that the commands Local
and Define are necessary in defining a
subroutine.

1. Enter the indata subroutine

 as shown to the
right at the beginning of the program after the
"Rental Car Pricing" comment.

2. Next, convert the If...Then...ElseIf...EndIf
structure into the rentcost subroutine

 by
placing Local rentcost and Define
rentcost()=Prgm before the structure and
EndPrgm after it.

3. Finally, create the output subroutine outdata

by including the If...Then...Else statements
that display the results. This subroutine

follows the rentcost subroutine.

4. Complete the program by adding the main

routine statements to call the subroutines.

5. Return to the Home screen and run the

rentmain() program. Be sure to check the
various choices, including at least several one
invalid choices like 6, 11.2 or -5.

rentmain()
Prgm
¨ Rental Car Pricing
 Input Subroutine
 Compute Rental Cost Subroutine
 Output Subroutine
¨ ****** MAIN R0UTINE ******
 Invoke Subroutines
EndPrgm

¨ Choose type of car
Local indata
Define indata()=Prgm
 Disp "Enter car choice"
 Disp "1=Economy, 2=Midsize"
 Disp "3=Full size, 4=Sports car"
 Input "Give Choice:",choice
 Input "Enter Renting days",n
EndPrgm

¨ Compute the Rental Cost
Local rentcost
Define rentcost()=Prgm
 If choice=1 Then
 20*n!cost
 ElseIf choice=2 Then
 30*n!cost
 ElseIf choice=3 Then
 40*n!cost
 ElseIf choice=4 Then
 50*n!cost
 Else
 -1!cost
 EndIf
EndPrgm

¨ Display the Total Cost
Local outdata
Define outdata()=Prgm
 If cost≥0 Then
 Disp "the total cost is:",cost
 Else
 Disp "Invalid choice"
 EndIf
EndPrgm

rentmain()
Prgm
¨ Rental Car Pricing

¨ ****** MAIN ROUTINE ******
 ClrIO
 ClrHome
 indata()
 rentcost()
 outdata()
EndPrgm

Problem solving and Program design using the TI-92 43

complex numbers

If you try −(1) on your TI-92
then the response is: "Non-real
result".

−1 is an example of a special
set of numbers called complex
numbers. Because of the
importance of complex numbers in
engineering and math a special

symbol, i, is reserved for 1− .

We write i ≡ −1
You will find this notation on
the TI-92 using 2)
Knowing this, roots of negative
values can still be determined.

For example 4 4 * 1 2i− = − =

abcform1()
Prgm
¨ Solutions of Quadratic Equation

¨ ****** SUB ROUTINES *******
 Enter Coefficients Subroutine
 Calculate Solutions Subroutine
 Display Solutions Subroutine

¨ ****** MAIN R0UTINE *******
Invoke Subroutines
EndPrgm

5.4.1 The ABC Formula: An example

Problem
Let's try an example from algebra: the solution to
a quadratic equation:

2 0ax bx c+ + =
for x.

Analysis
The quadratic formula, also called the ABC
formula:

2

1,2
4

2
b b acx

a
− ± −

=

solves the above equation.
The problem can yield three different solutions
depending the values of a, b, and c. In specific the
value of the root section of the solution called the
discriminant has an important influence.

1) Discriminant > 0
 if 2 4 0b ac− > the solution of the quadratic
 equation has two different real solutions.
2) Discriminant = 0
 if 2 4 0b ac− = the solution of the quadratic
 equation has only one real solution.
3) Discriminant < 0
 if 2 4 0b ac− < no real solutions exist, as the
square root of a negative number is not a real
number. The solutions will be "complex
numbers".

To see which solution the quadratic equation will
yield a precalculation of the discriminant is
necessary after which the correct solution can be
displayed on the screen.

Design
The basic structure can be split into three basic
"subroutines" or "subprograms" as shown on the
right.

44 Problem solving and Program design using the TI-92

Implementation
The first subroutine Enterdat() is shown to the
right.
Note

 : To type 2 Press [2nd][Char]:MathüI:2

The second subroutine Calcsolu() calculates the
solution of the quadratic equation for a given a, b
and c. It first calculates the first part of the
solution and the discriminant. Depending the
value of the discriminant (Disc) two possible
values of the second part of the solution are
available:

If 0 then 2=
2
DiscDisc part

a
<

⋅
 or,

DiscIf 0 then 2=
2 a

Disc part i< ⋅
⋅

 as complex

solution.

The use of the If…ElseIf…EndIf-statement can be
used to implement these solutions in the program.

The third and last subroutine Dispsol1() displays
the solutions of the equation on the screen. As
with the calculation subroutine multiple solutions
are possible depending the value of the
discriminant. A possible solution of this
subroutine with the use of the
If…ElseIf…Else…EndIf-statement is shown on
the right.

Finally the main routine can be added to complete
the program.

¨ Enter coefficient Subroutine
Local enterdat
Define enterdat()=Prgm
 Disp "Compute Solutions of:"
 Disp " ax® + bx + c = 0"
 ¨ Enter coefficients
 Input "Enter a:",a
 Input "Enter b:",b
 Input "Enter c:",c
EndPrgm

¨ Calculation Subroutine
Local calcsolu
Define calcsolu()=Prgm
 ªb/(2*a)»part1
 b^2-4*a*c»disc
 If disc>0 Then
 §(disc)/(2*a)»part2
 Elseif disc<0 then
 §(ªdisc)/(2*a)*(û)»part2
 EndIf
EndPrgm

¨ Display solution option 1
Local dispsol1
Define dispsol1()=Prgm
 If disc>0 Then
 Disp "The real solutions are:"
 Disp "x1=",part1,"+",part2
 Disp "x2=",part1,"-",part2
 ElseIf disc<0 Then
 Disp "The complex Solutions are:"
 Disp "x1=",part1,"+",part2
 Disp "x2=",part1,"-",part2
 Else
 Disp "The only real solution is:"
 Disp "x=",part1
 EndIf
EndPrgm

¨ ******** MAIN ROUTINE ********

¨ Calling subroutines
 enterdat()
 calcsolu()
 dispsol1()

EndPrgm

Problem solving and Program design using the TI-92 45

The program can now be tested to check if the
program works correctly.

A possible input and solution are given on the
right.
If you run this program every expression in the
Disp statement is printed out on a separate line as
shown on the right.. In other words, the text
"x1=" or "x2="is printed on one line, the number
Part1 on a second line, the symbol "+" or "-" on a
third line, and the number Part2 on a fourth line.

You can get around this difficulty by converting
the numbers and symbols into a string. Disp
applied to a string prints out the string as a single
object on one line. Applying the string command
to a numerical expression changes it into a string.
The & symbol concatenates two strings to one
string.
Your original solution then becomes
"x1 = "&string(Part1)&" +(" &string(Part2),
or we can first add Part1+Part2 and then use the
string command: "x1 = "&string(Part1 +Part2)
An example is shown on the right.

Substituting this new version for the output into
the subroutine gives you the revised dispsol2()
subroutine shown on the right.

To type &, press [2nd]H.

Notice that the last condition ElseIf Disc<0 is not
necessary and could be replaced by an Else since
once Disc>0 and Disc=0 have been dealt with,
Disc<0 is the only possibility remaining (unlike
the rental car situation, where other possibilities
remained).

Maintenance
To finish the program you can modify the main
routine to clear the PrgmIO and Home screen.
You can also add a command to delete all used
variables.

¨ Display Solution option 2
Local dispsol2
Define dispsol2()=Prgm
 If disc>0 Then
 Disp "The real solutions are:"
 Disp "x1 = "&string(part1+part2)
 Disp "x2 = "&string(part1-part2)
 ElseIf disc=0 Then
 Disp "The only real solution is:"
 Disp "x = "&string(part1)
 Else
 Disp "The complex solutions are:"
 Disp "x1 = "&string(part1+part2)
 Disp "x2 = "&string(part1-part2)
 EndIf
EndPrgm

¨ ******** MAIN ROUTINE ********
¨ Cleaning screens
 ClrIO
 ClrHome

¨ Calling subroutines
 enterdat()
 calcsolu()
 dispsol2()

¨ Deleting variables
 DelVar part1,part2,disc,a,b,c

EndPrgm

46 Problem solving and Program design using the TI-92

Problem solving and Program design using the TI-92 47

abcform()
Prgm
¨ Solution of quadratic Equation

¨ **** Subroutines ****
¨ Enter coefficient Subroutine
Local enterdat
Define enterdat()=Prgm
 Disp "Compute Solutions of:"
 ¨ Enter coefficients
 Input "Enter a:",a
 Input "Enter b:",b
 Input "Enter c:",c
EndPrgm

¨ Calculation Subroutine
Local calcsolu
Define calcsolu()=Prgm
 ªb/(2*a)»part1
 b^2-4*a*c»disc
 If disc>0 Then
 §(disc)/(2*a)»part2
 ElseIf disc<0 Then
 §(ªdisc)/(2*a)*(û)»part2
 EndIf
EndPrgm

¨ Display Solution
Local dispsolu
Define dispsolu()=Prgm
 If disc>0 Then
 Disp "The real solutions are:"
 Disp "x1 = "&string(part1+part2)
 Disp "x2 = "&string(part1-part2)
 ElseIf disc=0 Then
 Disp "The only real solution is:"
 Disp "x = "&string(part1)
 Else
 Disp "The complex solutions are:"
 Disp "x1 = "&string(part1+part2)
 Disp "x2 = "&string(part1-part2)
 EndIf
EndPrgm

¨ ******** MAIN ROUTINE ********
¨ Cleaning screens
 ClrIO
 ClrHome

¨ Calling subroutines
 enterdat()
 calcsolu()
 dispsolu()

¨ Deleting variables
 DelVar part1,part2,disc,a,b,c

Run the abcform() program. Check it by entering
values for a, b, and c that produce positive, zero,
and negative discriminants.

You also may want to check your results by using
the solve() or csolve() functions, which are built
into the T1-92.

48 Problem solving and Program design using the TI-92

gradass1()
Prgm
¨ Convert Point Score to Letter Grade
 Determine Letter Grade Subroutine
 Output Grade Subroutine
¨ MAIN R0UTINE
 Input the Total Point Score
 Invoke the Subroutines
EndPrgm

gradass1()
Prgm
¨ Convert Point Score to Letter Grade
¨ Determines Letter Grade from Point
 Score

Local compgrad
Define compgrad()=Prgm
 If score ≥90 Then
 "A"!grade
 ElseIf score<90 and score≥80 Then
 "B"!grade
 ElseIf score<80 and score≥70 Then
 "C"!grade
 ElseIf score<70 and score≥60 Then
 "D"!grade
 ElseIf score<60 and score≥0 Then
 "F"!grade
 Else
 Disp "Invalid Score."
 EndIf
EndPrgm

5.4.2 Assigning Exam Scores to Letter
Grades: An example

Let's look at one last example. Suppose you want
to assign letter grades based on exam scores.

Exam Score Letter Grade
Assigned

90 and above A
80 to 89 B
70 to 79 C
60 to 69 D
below 60 F

You realize that entering the score is a single
program line that does not require a subroutine.
You then write your program design.

First you can write the subroutine to determine
Letter Grades form Exam score using an
If...Then...ElseIf...EndIf structure.
Second to display the assigned letter grade.

1. Start a new program and name it gradass1

2. Enter the compgrad subroutine at the

beginning of the program.
Note

: The case of an invalid score being
entered is considered. It is always good to let
the user know when inappropriate data has
been entered.

Problem solving and Program design using the TI-92 49

gradass1()
Prgm
¨ Convert Point Score to Letter Grade
¨ Determines Letter Grade from Point
 Score

¨ ****** SUBROUTINES *******
Local compgrad
Define compgrad()=Prgm
 If score≥90 Then
 "A"!grade
 ElseIf score<90 and score≥80 Then
 "B"!grade
 ElseIf score<80 and score≥70 Then
 "C"!grade
 ElseIf score<70 and score≥60 Then
 "D"!grade
 ElseIf score<60 and score≥0 Then
 "F"!grade
 Else
 Disp "Invalid Score."
 EndIf
EndPrgm

¨ Displays the Letter Grade
Local dispgrad
Define dispgrad()=Prgm
 If score≥O
 Disp "The letter grade is:",grade EndPrgm

¨ ****** MAIN ROUTINE ******
 ClrIO
 Input "Enter the point score:",score
 compgrad()
 dispgrad()
EndPrgm

3. You are now ready to complete the program

gradass1() as shown to the right. The
dispgrad subroutine displays the letter grade.

4. Run the program. Check the output with the

table showing the Total Score and its
corresponding Letter Grade to make sure the
program works correctly. It is also important
to test invalid scores.

50 Problem solving and Program design using the TI-92

5.5 Summary of Commands

 2 exponent 2

 To type exponent 2 Press 2¿2:MathúI:2

≥ "greater than or equal to" symbol
 To type ≥ press 2ÃÁ or ¥¶ or press 2I, select 8:Test,

and select 3: ≥.

≤ "smaller than or equal to" symbol
 To type ≤ press 2ÂÁ or ¥µ or press 2I, select 8:Test,

and select 4: ≤.

≠ "not equal" symbol
 To type ≠ press eÁ or 2Ø or press 2I, select 8:Test,

and select 6: ≠.

& press 2H string1 & string2 ⇒ string
 The & symbol stands for appends (concatenates) two strings into

one string.
 For example:

 "Ton" & "and" & "Martijn"¸ returns: "Ton and Martijn"

and Boolean expression1 and Boolean expression2 ⇒ Boolean expression
 Returns true only if both expressions simplify to true. Returns false

if either or both expressions evaluate to false.
 Returns true or false or a simplified form of the original entry.
 For example:

 true and true¸ returns: true
false and true¸ returns: false
false and false¸ returns: false
x≥6 and x≥ 7 ¸ returns: x≥7

not(Boolean expression1) ⇒ Boolean expression
 Returns true, false, or a simplified Boolean expression1 .
 For example:

 not(2>=3)¸ returns: true
not(x<7)¸ returns: x≥7
not(not(trueborn))¸ returns: trueborn

or Boolean expression1 or Boolean expression2 ⇒ Boolean expression
 Returns true if either or both expressions simplify to true. Returns

false only if both expressions evaluate to false.
 Returns true or false or a simplified form of the original entry.
 For example:

 true or true¸ returns: true
false or true¸ returns: true
false or false¸ returns: false
x≥7 or x≥ 8 ¸ returns: x≥7

If expression If expression is true, only the statement following is executed;
otherwise, the statement is skipped.

Problem solving and Program design using the TI-92 51

If expression Then
 block of statements
EndIf If expression is true, the statements in block of statements are

executed; otherwise, these statements are not executed.

If expression Then
 block of statements1
Else
 block of statements2
EndIf If expression is true, the statements in block of statements1 are

executed; otherwise, the statements in block of statements2 are
executed.

If expression1 Then
 block of statements1
ElseIf expression2 Then
 block of statements2
.
.
.
ElseIf expressionN Then
 block of statementsN
EndIf If expression1 is true, the statements in block of statements1 are

executed; otherwise, if expression2 is true, the statements in block
of statements2 are executed; and so on.

52 Problem solving and Program design using the TI-92

5.6 Practical problems

Try the following exercises. Be sure to write a complete program using top-down program design,
subroutines, and decision blocks.

Problem 1
Write a program to roll a pair of dice. Use a random number generator to generate the six possible
values of each dice and display "You Win!" if a 7 or 11 is rolled, "Snake Eyes!" if a 2 is rolled and
"You loose" otherwise.
Hint
The TI-92 random-number generator rand(). rand(6) returns a random integer in the interval [1,6]

:

Problem 2a
Write an interactive program that will determine and print the day of the week for a given
daynumber dn; 1 ≤ dn ≤ 7 dn=1 correspond to Sunday, 2 to Monday, etc. Display an error for an
incorrect value of dn.

Problem 2b
Write a interactive program that determines the day number (1 to 366) in a year for a date that is
provided as input data. in the form mm-dd-yyyy. As an example, January 1, 1994, is day 1;
December 31, 1993 (input: 12-31-1993), is day 365 and December 31, 1996 is day 366 since 1996 is
a leap year. A year is a leap year if it is divisible by 4, except that any year divisible by 100 is a leap
year only if it is divisible by 400.

Problem 2c
Write an interactive program that will determine and print the day of the week, Sunday, Monday,
etc. for a given date, entered in the form mm-dd-yyyy (for example: 12-23-1952:Wednesday).
A year is a leap year if it is divisible by 4, except that any year divisible by 100 is a leap year only if
it is divisible by 400.
Hint
You can make use of the following functions on the TI-92: intDiv() and Mod().

:

Problem 3
Write an interactive program that will ask for 3 integers and determine and print how many has the
same value.

Problem 4
Write an interactive program that sorts 4 user-determined integers.

Problem 5
Write an interactive program that calculates the total amount due (excluding taxes) when given the
number of items purchased and the price per item.
In addition, a 10% discount is given when a customer purchases more than 10 of the same item.
Think about how you might solve the problem before you writing the program.
Hint
To type the % symbol, press 2¿, select 3:Punctuation, and then select 5:%

:

Problem solving and Program design using the TI-92 53

gradass2()
Prgm
¨ Convert Point Score to Letter Grade
¨ Determines Letter Grade from Point
 Score

¨ ****** SUBROUTINES *******
Local compgrad
Define compgrad()=Prgm
 If score≥90 Then
 "A"!grade
 ElseIf score≥80 Then
 "B"!grade
 ElseIf score≥70 Then
 "C"!grade
 ElseIf score≥60 Then
 "D"!grade
 ElseIf score≥0 Then
 "F"!grade
 Else
 Disp "Invalid Score."
 EndIf
EndPrgm

¨ Displays the Letter Grade
Local dispgrad
Define dispgrad()=Prgm
 If score≥O
 Disp "The letter grade is:",grade EndPrgm

¨ ****** MAIN ROUTINE ******
 ClrIO
 Input "Enter the point score:",score
 compgrad()
 dispgrad()
EndPrgm

Problem 6
In 1994, Louisiana's state income tax rate was 2% of the first $10,000 of taxable income, 3% of the
next $10,000 of taxable income, and then increased by 1% for each additional $10,000 of taxable
income, with a maximum rate of 6% of any taxable income above $40,000. Write a program with
an If...Then...ElseIf...EndIf structure that asks the user for the taxable income amount and then
prints the appropriate Louisiana state income tax.

Problem 7a
Write a program that requests the user to select a number from 1 to 5. The program then tells
whether the number is prime, composite, or neither. Be sure to deal with the possibility that the user
enters an invalid number.
Note

: A prime number has exactly two factors, a composite number has more than two factors, and
1 is neither prime nor composite.

Problem 7b
Write a program that requests the user to select a number. The program then tells whether the
number is prime, composite, or neither. Be sure to deal with the possibility that the user enters an
invalid number.

Problem 8
Modify the grades program in section 5.4.2 to request each student's name and ID number. Then
have the program display the student's name and ID number along with his/her letter grade.

Problem 9
Write a program that takes a person's age as input and
then prints a description using these categories:
• Infant (under 2)
• Toddler (2 to 3)
• Child (under 13)
• Teenager (13 to 19)
• Adult (18 or older)
• Senior citizen (65 or older).
Hint

: You have to be careful here since some of the
categories overlap (some ages may have more than one
description).

Problem 10
Explain why the results of gradass2(), on the right and
gradass1() on page 49 are equal?

54 Problem solving and Program design using the TI-92

Problem solving and Program design using the TI-92 55

tabel_7a()
Prgm
¨ The multiplication table of 7:
¨ The "old-fashioned way"
 Local oldtbl7a
 Define oldtabl7()=Prgm
 Disp " 1 x 7 = "&string(1*7)
 Disp " 2 x 7 = "&string(2*7)
 Disp " 3 x 7 = "&string(3*7)
 Disp " 4 x 7 = "&string(4*7)
 Disp " 5 x 7 = "&string(5*7)
 Disp " 6 x 7 = "&string(6*7)
 Disp " 7 x 7 = "&string(7*7)
 Disp " 8 x 7 = "&string(8*7)
 Disp " 9 x 7 = "&string(9*7)
 EndPrgm
¨ ******* MAIN ROUTINE ******
 ClrIO
 oldtbl7a()
EndPrgm

table_7b()
Prgm
¨ The multiplication table of 7:
¨ The new "do this 9 times" way
 Local newtbl7b
 Define newtbl7b()=Prgm
 For n,1,9
 Disp string(n)&" x 7 = "&string(n*7)
 EndFor
 EndPrgm
¨ ******* MAIN ROUTINE ******
 ClrIO
 newtbl7b()
E dP

6. Repetition Control Structures

In the programs studied so far, the statements
execute only once. Many tasks however are
repetitive like for instance the multiplication table
of seven as shown on the right. In order to
perform this multiplication you have to write the
line Disp "1 x 7 = "&string(1*7) etc. 9 times. In
most software however, a process (or block of
statements) can be repeated quite easily many
times with a repetition control structures. In the
remainder of this book repetition control
structures will be called “loops”.

Three different types of loops exist in the TI-92
namely For…EndFor, Loop..EndLoop and
While…EndWhile. We will discuss all three
types and their advantages of each in the
following paragraphs.

6.1 The For…EndFor structure
Our study of the loop structures starts with the
For…EndFor structure.
We can use the For…EndFor structure in the
multiplication table of 7. Start a new program and
name it table_7b.
Type the program lines as shown on the right. To
create the For…EndFor structure select the
4:For...EndFor command from the Control menu
(„).
This program has the same output as program
Table_7a but is much smaller in size. The
For…EndFor structure performs all repetitions
in one small block.
The statement For n,1,9 … EndFor loops the
command
Disp string(n)&" x 7 = "&string(n*7)
9 times, starting with n=1, n=2, n=3 … and
ending with n=9.
The variable n is called a “counter” and by
default increments automatically by 1 after each
loop repetition. When n>9 the program exits the
For…EndFor loop.

It is imminent to know beforehand how many
times you want the loop to be executed. The
For…EndFor structure requires you to know the
end value of the counter.

56 Problem solving and Program design using the TI-92

loopdice()
Prgm
¨ Count number of rolls until the pair
¨ {6 6} appear with Random dice
 Local dice1,dice2,count
 0!count ¨ set count initial to 0
 0!dice1 ¨ set dice1 initial to 0
 0!dice2 ¨ set dice2 initial to 0
¨ Creates a Loop
 Loop
 count+1!count ¨ increment count
 Rand(6)!dice1
 Rand(6)!dice2
 If dice1=6 and dice2=6 Then
 Exit
 EndIF
 EndLoop
 Disp "the number of rolls to"
 Disp "get {6 6} is "&string(count)
EndPrgm

Summarizing
The For…EndFor structure is defined as
follows:

:

For Countvar,Startval,Endval[,step]

 Block of Statement(s)

EndFor

Note

: Step(size) is the value by which the
countervar(iable) increments and can be positive
or negative. By default stepsize is 1.

6.2 The Loop...EndLoop structure
Suppose you want to roll a set of dice until both
dice show the number six on top. In this case you
do not know in advance how many times you
have to roll the dice. The For...Endfor structure
cannot be used.

You have to use a loop structure, which loops
continuously until a special condition is met to
stop the loop. The Loop…EndLoop structure
can perform this task. Start a new program and
call it loopdice. Enter the program lines as shown
on the right and run the program.

Pay special attention to how the program exits the
loop and how the number of times the loop is
executed is counted.
The condition to end the loop structure is placed
inside

 the loop using an If…Then statement and
the command Exit. The flowchart to the right
illustrates the execution.

Summarizing
The Loop…EndLoop structure is defined as
follows:

:

Loop

 Block of Statement(s)

 If end_condition then
 Exit
 EndIf

 EndLoop

Exit
condition

(true)

loop block
statements

(false)
Exit loop

Problem solving and Program design using the TI-92 57

whildice()
Prgm
¨ Count number of rolls until the pair
¨ {6 6} appear with Random dice
 Local dice1,dice2,count
 0!count ¨ set count initial to 0
 0!dice1 ¨ set dice1 initial to 0
 0!dice2 ¨ set dice2 initial to 0
¨ Creates a Loop
 While (dice1�6 or dice2�6)
 count+1!count ¨ increment count
 Rand(6)!dice1
 Rand(6)!dice2
 EndWhile
 Disp "the number of rolls to"
 Disp "get {6 6} is "&string(count)
EndPrgm

6.3 The While...EndWhile structure

Another structure to create loops is the
While…EndWhile structure. Like the
Loop…EndLoop structure the
While…EndWhile can also exit the loop at any
given time depending on the exit condition.
With respect to the end condition however the
While…EndWhile structure requires the end
condition to be stated at the beginning of the loop
instead of inside the loop for the
Loop…EndLoop structure. This requires you to
define in advance

 all variables used for the end
condition.

The program Loopdice can also be made to work
with the While…EndWhile structure. Make a
new program and call it Whildice. Enter the
program lines as shown on the right and run the
program.

The Boolean expression after the reserved word
While (dice1�6 or dice2�6)
is the condition to continu the loop. This
condition is evaluated every time at the start of
the loop. While the expression is true the loop
block statements between the While...EndWhile
statements is repeated. When the expression is
false (i.e.dice1=6 and dice2=6) the loop is exited.
This illustrates the flowchart to the right.

Compare this flowchart with the the
Loop…EndLoop flowchart and note the
difference.

Summarizing
The While…EndWhile structure is defined as
follows:

:

 While

expression is true

 Block of Statement(s)

 EndWhile

While
condition

(true) loop block
statements

(false)

Exit loop

58 Problem solving and Program design using the TI-92

average()
Prgm
 Averaging a Set of Numbers
Input Numbers Subroutine
 Compute Sum and Average Subroutine
 Output the Average Subroutine
 MAIN R0UTINE
 Invoke Subroutines
EndPrgm

fore_ave()
Prgm
¨ Calculate Avg with For EndFor loop

¨ Input Number
Local inp_num
Define inp_num()=Prgm
 Input "Averaging how many values?",n
EndPrgm

¨ Calculate Average
Local calcavg
Define calcavg()=Prgm
 ¨ initialize variable total
 O!total
 Disp "Enter the values one at a time"
 For i,1,n
 Input "Enter next value:",nextx
 nextx+total!total
 EndFor
 total/n!avg
EndPrgm

¨ Output Average
Local out_avg
Define out_avg()=Prgm
 Disp "The average is:",avg
EndPrgm

¨ ******* MAIN ROUTINE ******
 inp_num()
 calcavg()
 out avg()

6.4 Using Loops to Accumulate a Sum and
Average

Loops often accumulate a sum of numbers by
repeating an addition operation. The average of
the set of values can then be found by dividing
the number of values in the set.
You can find the average using any of the three
repetition structures
On the program design to the right you see that
this is the standard input-compute-output
problem.

6.4.1 Using a For…EndFor Loop

If you know that you have fixed value of N
numbers to average you can use a For ... EndFor
loop.
Let's concentrate on the subroutine to compute
the average. You must request the values from the
user, add them up, and then divide by the number
of values. The number of values N is in the
subroutine to input the numbers, so you can use
that number. The first statement of the For ...
EndFor loop (For i,1,N) runs the block it controls
N times, starting with i=1 and ending when i=N.

You have no way of storing the N values the user
enters. If you consider the way averages are
calculated, however, you'll realize that you don't
need all N individual values, only their sum.
Therefore, define a variable Total to be the sum
of the previous values. At the beginning
0  Total, because no values are entered.
NextX+Total Total updates the sum by adding
the current value "NextX" to the previous sum
"Total" and storing it in the same variable
"Total". At the end of the For ... EndFor loop,
you'll have the sum of all the values stored in the
variable Total.

Start a new program and name it fore_ave.
Enter the inp_num, calcavg and the out_avg
subroutine as shown to the right. Complete the
program by adding the main routine and run the
program.

Problem solving and Program design using the TI-92 59

loop_ave()
Prgm
¨ Calculate Avg with Loop EndLoop loop

¨ Calculate Average
Local calcavg
Define calcavg()=Prgm
 ¨ initialize variables
 O!counter
 O!total
 Disp "Enter the values one at a time"
 Disp "Enter -9999 to stop"
 loop
 Input "Enter next value:",nextx
 if nextx ≠ -9999 then
 nextx+total!total
 1+counter!counter
 else
 exit
 EndIf
 total/counter!avg
 endloop
EndPrgm

¨ Output Average
Local out_avg
Define out_avg()=Prgm
 Disp "The average of the "
 &string(counter)&" values is: "
 &string(avg)
EndPrgm

¨ ******* MAIN ROUTINE ******
 calcavg()
 out avg()

whil_ave()
Prgm
¨ Calculate Avg with Loop EndLoop loop

¨ Calculate Average
Local calcavg
Define calcavg()=Prgm
 ¨ initialize variables
 0»counter
 0»total
 Disp "Enter the values one at a time"
 Disp "Enter ª9999 to stop"
 Input "Enter the first value",nextx
 While nextx�ª9999
 nextx+total»total
 1+counter»counter
 Input "Enter next value:",nextx
 EndWhile
 total/counter»avg
EndPrgm

¨ Output Average
Local out_ave
Define out_ave()=Prgm
 Disp "The average of the"
 &string(counter)&" values is:
 &string(avg)
EndPrgm

¨ ******* MAIN ROUTINE ******
 calcavg()
 out_ave()

6.4.2 Using a Loop ... EndLoop Loop

Suppose you don't know the number of values in
advance. A For ... EndFor loop no longer works
since you need to know how many times the loop
will run. To solve this problem, select an
impossible value, one that is extremely unlikely
to appear in any set of values you enter. This
signals the program that you want to end the loop.
You then can use a Loop ... EndLoop structure.

Make a copy of the fore_ave program and name
it loop_ave.
You can delete the input number subroutine,
because we do not need to know the number of
values to average in advance.
Modify the calcavg subroutine as shown to the
right.
Rewrite the output subroutine to also display the
number of values averaged.

Consider using concatenation to display the
output on one line. Run the program.

6.4.3 Using a While ... EndWhile Loop

 The loop to calculate the average in calcavg
above also could be performed by a
While…EndWhile loop.
Make a copy of the loop_ave program and name
it whil_avg.
Modify the calcavg subroutine as shown to the
right.
Note

: The While...EndWhile structure differs
from the Loop...EndLoop structure in that the
value used to exit the While…EndWhile loop
must be known before you enter the loop.

60 Problem solving and Program design using the TI-92

whiltb_n()
Prgm
¨ The multiplication table of n:
¨ The new table_n
 Local table(n)
 Define table(n)=Prgm
 For k,1,9
 Disp string(k)&" x "&string(n)
 &" = "&string(k*n)
 EndFor
 EndPrgm

¨ ******* MAIN ROUTINE ******
 1!n
 While n ≠ 0
 ClrIO
 table(n)
 Disp "To run once more, enter a number"
 Input "≠ 0, to stop enter 0.",n
 EndWhile
EndPrgm

abcform2()
Prgm
¨ Solutions of Quadratic Equation
 -------------------..
 -------------------..
¨ ****** MAIN ROUTINE ******
 ClrHome
 "y"»again
 While again="y"
 ClrIO
 enterdat()
 calcsolu()
 dispsolu()
 Pause
 ClrIO
 Loop
 InputStr "Again ? (y/n)",again
 If again="y" or again="n":Exit
 EndLoop
 EndWhile
EndPrgm

6.5 Nested Loops

Running a Program More than Once

Let's look at a more complicated looping
example.
Look at the program table_7b (section 6.1 on
page 55) the multiplication table of 7
You want to rewrite the program in such a way
that it runs not just once for the number 7, but
many times for any number the user can choose
until the user decide to stop it.

To do this, embed the main body of the program
inside a While ... EndWhile loop. Simply replace
the main routine with statements to accomplish
this task.
Make a copy of the existing program and name it
whiltb_n.

Modify the sub routine and main routine as
shown to the right. Run the program.
This program runs as long as you enter a
number ≠ 0 at the input prompt. As soon as you
enter 0, the program ends.

You can do this with any program you've already
written.
For example you might want the ABCForm()
program in section 5.4.1 on page 47 to run for
different values of a, b and c until you decide to
stop it. To do this, embed the main body of the
program inside a While...EndWhile loop. Simply
replace the main routine with statements to
accomplish this task.
Make a copy of the existing program abcform and
name it abcform2. Modify the main routine as
shown to the right and run the program.

This program runs as long as you enter y ¸
at the InputStr prompt: Again ? (y/n).
As soon as you enter n ¸, the program ends.
You can do this with any program you've already
written.

Problem solving and Program design using the TI-92 61

nestloop()
Prgm
¨ illustration of nested for loops
 ClrIO
 For i,1,5 ¨ outer
 Disp " i j Enter" ¨ Heading
 Pause
 Disp "outer "&string(i)
 For j,1,i ¨ inner
 Disp "inner "&string(i)&" "&string(j)
 EndFor
 EndFor
EndPrgm

For example a 6 x 5 matrix on
the TI-92:

Using the counter in nested loops.

Nested loops consist of an outer loop with one or
more inner loops. Each time the outer loop is
repeated, the inner loops are reentered, their loop-
control expressions are reevaluated and all
required iterations are performed.

The program nestloop and sample run as shown
to the right demonstrate two nested for loops. The
outer loop is repeated five times, for i equal 1, 2,
3, 4 and 5.
Each time the outer loop is repeated, the
statement:
Disp " i j Enter"
displays the header string 'i j Enter' ,
the statement Pause lets the program wait until
the user press ¸
and the statement
Disp "outer "&string(i)
displays the string 'outer' and the value of i (the
outer loop-control variable). Next the inner loop
is entered, and its loop-control variable, j, is reset
to 1. The number of times the inner loop is
repeated depends on the current

Disp "inner "&string(i)&" "&string(j)

 value of i. Each
time the inner loop is repeated, the statement

displays the string ' inner ' and the value of i and j.
The outer loop-control variable, i, is also the
expression whose value determines the number of
repetitions of the inner loop. Although this is
perfectly valid, you cannot use the same variable
as the loop-control variable of both an outer and
an inner for loop in the same nest.

6.5.1 Create and Fill a Matrix: An example

A matrix be made up of rows and columns filled
with numbers. A matrix A with r rows and c
columns turn into:

11 12 13 14 1c

21 22 23 24 2c

31 22 22 22 4c

r2 r3 r41

a a a a ... a
a a a a ... a
a a a a ... a
...
a a a a ... ar rc

 
 
 
 
 
 
  

:

62 Problem solving and Program design using the TI-92

Note: On the TI-92, you must use square
brackets [] for matrices.

makeamat()
Prgm
 Create a Matrix
 with Appropriate Entries
 Input Dimensions Subroutine
 Create Matrix Subroutine
 Display Matrix Subroutine
 MAIN ROUTINE
 Invoke Subroutines
EndPrgm

1 1 1 2 1 3
2 1 2 2 2 3
3 1 3 2 3 3
4 1 4 2 4 3

+ + +
+ + +
+ + +
+ + +

 
 
 
 
  

Above is mat_m where nrows=4 and ncols=3.

The final mat_m solution is:

2 3 4
3 4 5
4 5 6
5 6 7

 
 
 
 
  

For j,1,ncols ¨ variable column no j
 1+j!mat_m[1,j] ¨ fixed row number 1
EndFor

Its row and column index numbers specifies each
element of a matrix. Therefore, the element a23 in
row 2 and column 3 of the matrix mat_x would
be named mat_x[2,3]

In working with any matrix, nested loops are very
useful because you can use one loop to deal with
the rows and another to deal with the columns.

Suppose you want to write a program to create a
matrix. First, have the user input the number of
rows and the number of columns for the matrix.
Then, use nested loops to create the elements in
the matrix. Begin by writing a program design
such as one shown to the right.

Solving the Problem
As you think through the solution, follow the
steps below.

1. Create a matrix called mat_m where each

element in the matrix is the sum of the row
number and the column number.

Let nrows be the number of rows in your
matrix and ncols the number of columns. The
user will input the values for both of these.
Set mat_m[1, 1] (the element in the first row
and first column of the matrix mat_m) to 1+1,
mat_m[1,2] to 1+2, mat_m[1,3] to 1+3, and so
on until you set mat_m[1,ncols] to 1 +ncols.
(See example to right.)
If you think of the second number in each
bracket as a variable that assumes the
successive values 1, 2, 3, ... up to ncols, you
could combine all these statements into a
single For ... EndFor loop.

2. Write the loop to fill the first row of the
matrix as shown to the right. The number 1 in
the second line of the loop is a fixed number-
representing row 1 of the matrix.

Problem solving and Program design using the TI-92 63

For j,1,ncols
 2+j!mat_m[2,j] ¨ fixed row number 2
EndFor

¨ Get Dimensions of Matrix
Local getdims
Define getdims()=Prgm
 Input "Enter number of rows:",nrows
 Input "Enter number of columns:",ncols EndPrgm

For j,1,ncols ¨ variable column no j
 i+j!mat_m[i,j] ¨ variable row number i
EndFor

For i,1,nrows ¨ variable row number i
 For j,1,ncols ¨ variable column no j
 i+j!mat_m[i,j]
 EndFor
EndFor

makeamat()
Prgm
¨ Fill a Matrix with Specified Entries

¨ Get Dimensions of Matrix
Local getdims
Define getdims()=Prgm
 Input "Enter number of rows:",nrows
 Input "Enter number of columns:",ncols
EndPrgm

¨ Calculate Individual Matrix Entries
Local fillmat
Define fillmat()=Prgm
 newMat(nrows,ncols)»mat_m
 For i,1,nrows
 For j,1,ncols
 i+j»mat_m[i,j]
 EndFor
 EndFor
EndPrgm

¨ Display Resulting Matrix
Local outdata
Define outdata()=Prgm
 Disp "Your matrix is:",mat_m
EndPrgm

¨ ****** MAIN ROUTINE ******
 getdims()
 fillmat()
 outdata()
EndPrgm

3. Now that row 1 is filled, you can write
another loop for row 2. This loop is identical
to the previous one except the fixed number 1
becomes a 2. This repeats until you reach the
number of rows (nrows) needed. In the last
loop, the fixed number could be replaced by a
variable, nrows, where the user assigns the
value to nrows. This is demonstrated in the
getdims subroutine to the right, which also
includes an Input statement to let the user
assign a value to variable ncols.

4. Generalize the For ... EndFor loop to fill the
i-th row by replacing the specific row number
with the variable i.

This loop sets each element of the matrix
mat_m to be the current row number i plus the
current column number j. Once this loop is
finished, row i is complete.

5. Now nest this loop inside a loop that makes i
take on the values from 1 to nrows.
Note: As previously discussed, the two nested
loops must have different counter variables.
The inner loop goes through a full set of
repetitions for each repetition of the outer
loop.

6. To complete the subroutine, create the actual
matrix using the newMat(nrows,rcols)
command. This command creates a matrix
with dimension nrows by ncols filled with
zeroes in the calculator's memory.

7. Combine this subroutine with input and
output subroutines to complete the program.

Now you are ready to enter the program and try
it.

Start a new program in the Program Editor and
name it makeamat.

Enter the program as shown to the right.
Note: It is important to understand in what order
the matrix is actually getting its elements.
Run the program.

To make sure you understand nested loops,
reverse the two loops to see what happens to the
program.

64 Problem solving and Program design using the TI-92

dispzero()
Prgm
 Print Out Zeros of an Expression
 Find Zeros Subroutine
 Output Subroutine
 MAIN ROUTINE
 Invoke Subroutines
EndPrgm

dispzero()
Prgm
¨ Prints Zeros of an Expression

¨ Find Zeros
Local listzero
Define listzero()=Prgm
 zeros(x^6-14*x^4+49*x^2-36,x)»zlist
EndPrgm

¨ Print Out Zeros
Local outlist
Define outlist()=Prgm
 dim(zlist) »n
 For i,1,n
 Disp zlist[i]
 EndFor
EndPrgm

¨ ****** MAIN ROUTINE ******
 listzero()
 outlist()

6.5.2 Print Out Zeros of an Expression: An
example

Any command you can enter on the Home screen
you can use in a program. Let's use the zeros()
command to write a program that prints out all of
the zeros of an expression.

The zeros() command creates a list of all zeros of
the given expression. You can access the list
elements by specifying them in brackets.
Therefore, if zlist is the name of the list, zlist[l] is
the first element, zlist[2] is the second element,
etc. This is similar to specifying the elements of a
matrix.

Think about the tasks to solve the problem and
then write your program design.

Unlike earlier examples, there is no input
subroutine because the expression for which you
are solving is part of the zeros() command. The
listzero subroutine assigns the list produced by
the zeros() command to another list called zlist.
Although the listzero subroutine is simple, the
outlist subroutine requires some thought.

Start a new program and name it dispzero.
Enter the listzero subroutine at the beginning of
the program as shown to the right. Notice that
you are finding the zeros of the expression
x6 -14x4 + 49x2 -36.
To display the zeros, you must find the "length"
of the list (the number of zeros) produced by the
zeros() command so you will know how many
values to display. The dim() command applied to
a list returns the number of elements in the list.
Use dim() when you write the output subroutine.

Enter the outlist subroutine.
Complete the program to display the zeros of
x6-14x4 + 49x2 -36 by adding the main routine.
Run the program.

To find the zeros of another expression, change
the expression in the zeros() command. In a later
chapter, you will learn how to change the
expression without having to rewrite the program.

Problem solving and Program design using the TI-92 65

6.6 Summary of Commands

dim(list) ⇒ integer
 Returns the dimension of list.
 For example:

 dim(0,1,2) ¸ returns: 3

For counter, begin_val, end_val [,step_size]
 block of statements
EndFor Executes the statements in block of statements iteratively for each

value of counter from begin_val upto (or downto) end_val, in
increments (or decrements) of step_size.
counter must not be a system variable.
step_size can be positive or negative, the default value is 1.

InputStr [promptString,] var pauses the program, displays promptString on the Program I/O

screen, waits for you to enter an expression, and stores the
expression in variable var.
If you omit promptString , "?" is displayed as a prompt.

 Note: The difference between Input and InputStr is that InputStr

always stores the result as a string

 in such a way that " " are not
required.

int(expression) ⇒ integer

Returns the greatest integer that is less than or equal to the
expression.

 For example:

 int(-2.7)¸ returns: -3

Loop
 block of statements
EndLoop Repeatedly executes the statements in block of statements until an

exit condition is satisfied.
 Note that the loop will be executed endlessly, unless a Goto or Exit

instruction is executed within block of statements.

mod(expression1,expression2) ⇒ expression
 Returns the first argument modulo the second argument as defined

by the identities:
 mod(x,0) ≡ x
 mod(x,y) ≡ x - y•int(x/y)

 For example:

 Note: See also remain() on page

 mod(14,3)¸ returns: 2
mod(14,3) ≡ 14 - 3•int(14/3) = 14 - 3•4 = 2

133.

newMat(numRows,numCols) ⇒ matrix

66 Problem solving and Program design using the TI-92

 Returns a matrix of zeros with the dimension numRows by
numCols.

 For example:  
  
0 0 0 0 0 0 0
0 0 0 0 0 0 0

 newMat(7,2)¸ returns:

rand([n]) ⇒ expression
 With no parameter n, returns the next random number between 0

and 1 in the sequence.
 For example:

 rand()¸ returns: 0.158
When an argument is positive, returns a random integer in the
interval [1,n].

For example:

 rand(7)¸ returns: 5
When an argument is negative, returns a random integer in the
interval [-n ,-1].

For example:

 rand(-7)¸ returns: -3

While condition
 block of statements
EndWhile Executes the statements in block of statements as long as condition

is true.
You must allow for the value condition to be changed whitin the
block of statements.

zeros(expression ,var)) ⇒ string

Returns a list of candidate real values of var that make
expression = 0.

 For example:
2 2((4)) ((4))

2 2
a c b b a c b b

a a

 − − ⋅ ⋅ − + − ⋅ ⋅ − − 
 ⋅ ⋅  

 zeros(a*x^2+b*x+c,x)¸ returns:

 For some purposes, the result form for zeros() is more convenient
than that of solve() .However, the result form of zeros() cannot
express implicit solutions, solutions that require inequalities, or
solutions that do not involve var.

Problem solving and Program design using the TI-92 67

randcirc()
Prgm
¨ Draw 25 Circles
¨ with Random Centers and Radii

¨ Set Window Variables subroutine
 Local setwin
 Define setwin()=Prgm
 0»xmin
 30»xmax
 0»ymin
 15»ymax
 EndPrgm

¨ Draw circles subroutine
 Local drawcirc
 Define drawcirc()=Prgm
 ¨ Creates a Loop
 For countc,1,25
 ¨ Store a Number in xc,yc and rc
 rand(30)»xc
 rand(15)»yc
 rand(4)»rc
 ¨ Draws the Circle
 Circle xc,yc,rc
 EndFor
 EndPrgm

¨ Main Program
 clrdraw
 FnOff ¨ Turns Off Selected Functions
 setwin()
 drawcirc()

6.7 Practical problems

Try the following exercises. Be sure to write a complete program using top-down program design,
subroutines, and decision blocks.

Problem 1
Replace in the nestloop program on page 61 the inner loop-control variable j into the outer loop
variable i. Run the program and explain what is happening.

Problem 2
The randcirc program on the right draws 25 circles
with random centers and radii. It selects the center
and radius of a circle randomly, with the TI-92
random number generator, and then uses the
For…EndFor loop statement to draw the 25 random
circles.

Modify the randcirc program to draw 10 random
lines at a time. Set the values of the Window
variables to xmin= —20, xmax=20, ymin= —10,
and ymax=10. Generate random values of x0
between —20 and 20, random values of y0 between
—10 and 10, and random values of m between —20
and 20. Finally, use the DrawSlp command to draw
the line that passes through the point (x0,y0) and has
slope m.

Problem 3
Write a program that imitates the max() command
on the TI-92. Your program should read in a set of
numbers and print out the largest value entered.
Write the program two ways:
3a The user enters the number of values desired

and then enters the values.
3b The user enters values until an "impossible" value is entered.

Problem 4
An Identity matrix is a square matrix (dimension n by
n) with zeros everywhere except the main-diagonal
elements are all equal to 1. An 4 by 4 identity matrix
is shown on the right.
Write a program to create a k by k identity matrix.
That is, the program asks the user for the number of
rows in the matrix and then creates an identity matrix
with that many rows and columns.

68 Problem solving and Program design using the TI-92

 January
 1
 2 3 4 5 6 7 8
 9 10 11 12 13 14 15
 16 17 18 19 20 21 22
 23 24 25 26 27 28 29
 30 31

1

1 2 1
1 3 3 1

1 4 6 4 1
1 5 10 10 5 1

1 6 15 20 15 6 1

Problem 5
Modify the dispzero program (section 6.5.2 on page 64) in such a way that it prints out the list of
zeros in reverse order (that is, starting with the nth zero and printing the first zero last).

Problem 6
Write a program that will find the smallest, largest, and average values in a collection of N
numbers. Read in the value of N before reading each value in the collection of N numbers.

Problem 7
Write a program to generate a month of a yearly calendar. The
program should accept the month, year and the day of the week for
January 1 of that year (1 = Sunday, 7 = Saturday). The calendar
should be printed in the following form:

Problem 8
Write a program to read in a collection of exam scores ranging in value from 1 to 100. Your
program should count and print the number of out standing scores (90 -100), the number of
satisfactory scores (55 - 89), and the number of unsatisfactory scores (1-54). It should also display
the category of each score. Test your program on the following data:

63 75 72 72 78 67 80 63 75 90 89 43 59 99 82 12 100

Modify your program to display the average exam score (a real number) at the end of the run.

Problem 9
The factorial of a positive integer quantity, n, is defined as N!=1 x 2 x 3 x 4 x..x (N-1) x N.
Thus 2! = 1 x 2; 3! = 1 x 2 x 3; 4! = 1 x 2 x 3 x 4; and so on.
Write a program to read in a positive integer and calculates a list of factorials.

Problem 10
The Fibonacci numbers form an interesting sequence in which each number is equal to the sum of
the previous two numbers. In other words,
 Fi = Fi-1 + Fi-2
where Fi refers to the i-th Fibonacci number. The first two Fibonacci numbers are, by definition,
equal to 1; i.e., F1 = F2 = 1.
Hence, F3 = F2 + F1 = 1 + 1 = 2
 F4 = F3 + F2 = 2 + 1 = 3
 F5 = F4 + F3 = 3 + 2 = 5
and so on.
Write a program to read in a positive integer N and determines the first N Fibonacci numbers. Test
the program with N=23.

Problem 11
Generate the following "triangle of pascal" of
digits, using nested loops. (Do not simply write
out 10 multidigit strings).

Problem solving and Program design using the TI-92 69

 1
 232
 34543
 4567654
 567898765
 67890109876
 7890123210987
 890123454321098
 90123456765432109

Problem 12
Generate the following "pyramid" of digits,
using nested loops. (Do not simply write out 9
multidigit strings).

Problem 13
Develop

Starting point: a total amount in advance in your wallet, fixed costs for a bottle of beer and a fixed
deposit for a bottle of beer.

 a program that calculates the maximum amount of beer, which can be bought, with a given
amount of money in a supermarket. The (empty) bottles can be returned to the supermarket.

Problem 14
Generate for example the following "pyramid of
triangles".
Develop
• the "pyramid of triangles" is always completely

visible on the screen,

 a program suchlike that:

• the program should accept the size (height and
width) from the small triangles,

• and de user can determine in advance the amount
of triangles on the baseline of the pyramid.(In this example thus 4 triangles).

Problem solving and Program design using the TI-92 71

7. Functions, Subroutines,
Programs and Parameters

The introduction to subroutines (section 4.2
"Top-Down Design" on page 28) illustrated how
to write separate program components –the
subroutines- of a program. These subroutines,
correspond to partial steps in a problem solution.
In this chapter, you will learn a new type of
program component namely functions. You will
learn how to control the behavior of these
functions, as well as the behavior of instructions,
subroutines and programs, through the use of
parameters.

7.1 Functions
Functions are independent modules like
subroutines, except that subroutines can return
any number of results whereas a function always
returns a single unique result.
For example the equation 2y x= defines y as
function of x because for each x the square of x
is unique. The equation 2y x= can be represented
by the function 2()f x x= . This means that
applying the function f to the quantity x results
in 2x . Thus (2) 4f = , (4) 16f = and (3) 9f − = .
This also applies to symbolic expressions, so

2 2(3) (3) 6 9f a a a a+ = + = + + .

You can extend this notation to handle functions
with multiple input.
For example the equation 2 2z x y= + can be
represented by the function 2 2(,)g x y x y= + , in
such a way that 2 2(2,3) 2 3 1 3g = + = .

Built-in functions
The TI-92 has a large number of built-in
functions, that is, named functions, which have
already been defined within the calculator. You
can find a list in the Quick-Find Locator section
of Appendix A in the TI-92 Guidebook. Some of

72 Problem solving and Program design using the TI-92

the more familiar examples are the trigonometric
functions sin(), cos(), tan(), the logarithmic
functions ex, ln(), and log(), and single operators
like x-1 , abs(), √() and !.

Functions do not have to be mathematical,
however. For example, dim() is a function since
each list or string (the input) has a unique number
of elements or length (the result).

User-Defined Functions
Often, you need a function that is not built into
the TI-92. If you want to graph an equation, for
example, it is unlikely that the equation you want
to graph is one of the built-in functions.

Suppose that you wish to define a new function

2() (cos(2) 2cos())f x x x= − , x is called the
independent variable or function parameter. In
addition to defining functions in the Y= Editor,
you also can define functions using the Store (»)
command or the Define command.

The Store Command
To define a function using the Store command
(§ key), you simply store the definition of the
function into a name you choose for the function
(with the appropriate number of input variables).
Examples are shown to the right.

The Define Command
With the Define command, the method is almost
the same as with the Store command, except that
the function and its definition are reversed and
separated by an =. The examples above would be
entered as shown to the right.

Although built-in functions and user-defined
functions can cover most situations where you
need a function, there are cases where a function
is too complicated to define on a single line using
Store (») command or the Define command.

Let's look at two such functions plus a piecewise
function and see how you could create your own
version of them.

(cos(2*xx)-2*cos(xx))^2»f(xx)
xx^2+yy^2»g(xx,yy)
sin(xx)+yy^3+zz»g3(xx,yy,zz)

Define f(xx)=(cos(2*xx)-2*cos(xx))^2
Define g(xx,yy)=xx^2+yy^2
Define g3(xx,yy,zz)=sin(xx)+yy^3+zz

Problem solving and Program design using the TI-92 73

7.1.1 Create an Absolute Value Function: An
Example

In section 5.2.1 (page 39), you wrote the
absvalue program that imitated the absolute value
function on the TI-92. Let's take those statements
and actually create your own definition of
absolute value.
There is no easy way to define the function as a
single expression, since the absolute value of a
number depends on whether the number is
positive or negative. Therefore, you will create a
new function.

1. Press O to start a new function variable in

the Program Editor, select 7:Program Editor
and then select 3:New.

2. Select 2:Function as the Type.
3. Type abs01 as the name of the new function

variable.

4. Press ¸ ¸ to store the function name

and display the new function template. The
function name, Func, and EndFunc are
shown automatically. Each line of the
function begins with a colon (:).

5. Type the function lines as shown to the right.

Be sure to include the x between the
parentheses in the name of the function. The
Return statement tells the calculator what the
result of your function is and ends the
function.

6. Return to the Home screen and run the

abs01() function.

Be sure to include a value between the
parentheses. For example, entering abs01(-7)
returns 7.

Note: If the Return statement is skipped, the
function automatically returns the last expression
before EndFunc.

74 Problem solving and Program design using the TI-92

For example we copy the abs01() to abs02() and
we modify the abs02() function as shown to the
right.
In this case, if x is positive, the function returns x;
but if x is negative, the If...Then statement is
skipped and the function automatically returns the
last expression before EndFunc.

7.1.2 Create an Factorial Function: An
Example

Let's look at another, more complicated example
of imitating a built-in function. The factorial
function, represented by!, takes any positive
integer (N) as input.

The result is the product of all positive integers
less than or equal to N.
Some examples are given to the right.

A loop running from n downto 1 is required.

Start a new function variable in the Program
Editor and name it fac01.
Enter the function lines shown to the right. Be
sure to include the n in the name of the function.
Notice that the counter variable i and the return
variable fc have meaning only inside the
definition of fac01(n) They belonging just to the
function and therefore need to

Return to the Home screen and run the fac01()
function.

 be designated as
local. If you don't designate them as local, you'll
get an error message.

Recursive functions (optional)

0! 1
1! 1
2! 2*1
3! 3*2*1
4! 4*3! 4*3*2! 4*3*2*1

! *(1)! *(1)*(2)!N N N N N N

=
=
=
=
= = =

= − = − −

Problem solving and Program design using the TI-92 75

Instead of executing a For-loop to repeat the
multiplication, we can use the statement:

n*fac(n-1)»fc
The statement contains a function designator,
fac(n-1), which calls function fac with an
argument that is 1 less than the current argument.
This function call is a recursive call.
If the argument in the initial call to Fac is 3, the
following chain of recursive calls occurs:
Fac(3)  3*Fac(2)  3*(2*Fact(1))
In the last of these calls, N is equal to 1, so the
statement: 1»fc executes, stopping the chain of
recursive calls.
When it finishes the last function call, the TI-92
must return a value from each recursive call,
starting with the last one. The last call was Fac(1)
and it returns a value of 1. To find the value
returned by each call for N greater than 1,
multiply N by the value returned from Fac(N-1).
Therefore the value returned from Fac(2) is 2 *
the value returned from Fac(1); the value returned
from Fac(3) is 3 * the value returned from Fac(2)
etc.

7.2 Introduction to parameter lists

Parameter lists provide the communication links
between the main program and its modules.
Parameters make instructions, subroutines and
functions more versatile because they enable a
module to manipulate different data each time it
is called.

Actual and Formal parameters.
Each subroutine with parameters has two parts: a
name and an actual parameter list.
To illustrate the graphics subroutine frame on the
right (or have a look at the house program on
page 32) draws a rectangle from point (x1, y1),
with width (w1) and height (h1) on the screen. Its
subroutine call statement: frame(x,y,w,h) consist
of the subroutine name frame, and the actual
parameter list (x,y,w,h). The values of the four
actual parameters are passed to subroutine frame,
which draws the rectangle:
a line from (x,y) to (x+w,y),
a line from (x+w,y) to (x+w,y+h),
a line from (x+w,y+h) to (x,y+h) and
a line from (x,y+h) to (x,y).

¨ Draws the Frame
 Local frame
 Define frame(x,y,w,h)=Prgm
 Line x,y,x+w,y
 Line x+w,y,x+w,y+h
 Line x+w,y+h,x,y+h
 Line x,y+h,x,y
 EndPrgm

x+w,y+h x,y+h

x+w,y x,y

76 Problem solving and Program design using the TI-92

To draw another rectangle we need the subroutine
call statement frame(xx,yy,ww,hh). In each
subroutine call, the programmer provides
subroutine frame with four variables or values
which represent the (x,y) left corner coordinates
en the width and height of the rectangle on the
screen.
Because the four coordinates can change each
time frame subroutine is called, we must
represent them somehow in the subroutine Define
part.
To do this we use dummy names called formal
parameters: xs,ys,wi,he
The formal parameter list shows the four formal
parameters inside the subroutine to represents the
x, y coordinates of the left corner (xs,ys) and the
width (wi) and height (he) of the rectangle to be
drawn.

Correspondence Between Actual and Formal
Parameters
Subroutine frame doesn't know what values it
will receive until it is called.
The calling program in the MAIN ROUTINE
passes the information needed by frame via the
actual parameter list, matching each actual
parameter with its corresponding formal
parameter.

actual corresponds to Formal
 x xs
 y ys
 w wi
 h he

 xx xs
 yy ys
 ww wi
 hh he

¨ ****** MAIN ROUTINE ******

 frame(x,y,w,h)

 frame(xx,yy,ww,hh)

¨ Draws a Frame
 Local frame
 Define
 frame(xs,ys,wi,he)=Prgm
 Line xs,ys,xs+wi,ys
 Line xs+wi,ys,xs+wi,ys+he
 Line xs+wi,ys+he,xs,ys+he
 Line xs,ys+he,xs,ys
 EndPrgm

Problem solving and Program design using the TI-92 77

abcform3(a,b,c)
Prgm
¨ Solutions of Quadratic Equation

¨ The CalcSolu subroutine
Local calcsolu
Define calcsolu(a,b,c)=Prgm
 -b/(2*a) ! Part1
 b^2-(4*a*c) ! Disc
 If Disc>O Then
 √(Disc)/(2*a) ! Part2
 ElseIf Disc<O Then
 √(-Disc)/(2*a)*i ! Part2
 EndIf
EndPrgm

¨ The Dispsolu subroutine
Local dispsolu
Define dispsolu(a,b,c)=Prgm
Disp string(a)&"x® + "&string(b)&"x + "&string(c)&" = 0"
If Disc>0 Then
 Disp "The real solutions are:"
 Disp "x1 = "&string(Part1+Part2)
 Disp "x2 = "&string(Part1-Part2)
 ElseIf Disc=0 Then
 Disp "The only real solution is:"
 Disp "x = "&string(Part1)
 ElseIf Disc<0 Then
 Disp "The complex solutions are:"
 Disp "x1 = "&string(Part1+Part2)
 Disp "x2 = "&string(Part1-Part2)
 EndIf
EndPrgm

¨ ******* MAIN ROUTINE ******
 ClrIO
 Disp Compute Solutions of:
 calcsolu(a,b,c)
 dispsolu(a,b,c)
EndPrgm

Since subroutines and programs are similar, you
also could use parameters for a program.

For example, instead of inputting the coefficients
of a quadratic equation in de abcform() program
(see section 5.4.1 on page 47), you could make
them parameters. Running the new abcform3(1,-
5,6) program would print out the solutions for the
equation 21 5 6 0x x− + = .

You can try this by eliminating the input
subroutine enterdat(), changing the first line of
the program to abcform3(a,b,c), adding the
parameters to the subroutine calcsolu(a,b,c) and
dispsolu(a,b,c)and running the program.

78 Problem solving and Program design using the TI-92

7.3 Summary of Commands

DrawFunc expression Draws expression as a function of x, using x

 as the independent
variable.
Note: Regraphing erases all drawn items.

Func
 block of statements
EndFunc Format required to define a multi(line)statement function.

Local var1[,var2][,var3]
 Declares the specified vars as local variables. Those variables exist

only during evaluation of a program or function and are deleted
when the program or function finishes execution.

 Note: Local variables save memory because they only exist
temporarily. Also, they do not disturb any existing global variable
values. Local variables must be used for temporarily saving values
in a multiline function

 since modifications on global variables are
not allowed in a function.

Return[exp] Returns the expression exp as a result of the function. Use within a
Func…EndFunc block.

 For example:

 Define abs(x)=Func
: If x≥0 Then
: Return x
: Else
: Return ªx
: EndIf
:EndFunc ¸

abs(-7) ¸"returns": 7

Problem solving and Program design using the TI-92 79

7.4 Practical problems

Try the following exercises. Be sure to write a
complete function or program using top-down
program design, functions and subroutines where
needed.

Problem 1
Define the following functions using multi-line
functions.

a) Pos(x) is a function that returns "Pos" if a

number is positive and "Neg" if it is negative.

b) Pieces(x) has the value

2x if x 0
2x+ 1 if 0<x<4
4-x if x 4.

 ≤


 ≥

c) Sumall(n) returns the sum of all the positive
integers squared from 1 to n: 12+22+…..+n2.

d) Sumsome(a,b) returns the sum of all the
positive integers squared from a to b.
Hint. You can do this either by modifying
your answer to (c) or by using the definition
of sumall and noticing that sumsome(a,b) is
sumall(b)-sumall(a-1).

e) Fibo(n) returns the nth term of the Fibonacci
sequence.
Note: The Fibonacci sequence is defined by
F1 = 1, F2 = 1, and F3 is the sum of the
previous two terms, in such a way that the
first few terms of this sequence are 1, 1, 2, 3,
5, 8, 13, 21, 34,55,....

f) Pow(x,y) raises the real number x to the
positive integer power y.
Hint.. Write the definition using a loop, not
the built-in exponentiation operation.

Problem 2

Write a function !(,)
!()!

NC N R
R N R

=
−

 that

returns the number of different ways R items can
be selected from a group of N items.

Problem 3
Add three subroutine calls to the main routine of
the stick figure program in section Fout!
Verwijzingsbron niet gevonden. Fout!
Verwijzingsbron niet gevonden. on page 47.
These subroutines will draw a second and third

80 Problem solving and Program design using the TI-92

figure from the same size on the left and right
side of the large figure.

Problem 4
Write a program using subroutines with
parameters that will draw three houses of
different sizes at different places on the screen.
Your program should only have one set of
housedrawing subroutines that you use three
times with different values for the parameters.
Ask the user for the size of each house (height
and width) and the location of the bottom left
corner of each house. (see section 4.2.1 Drawing
a House: An example on page 28).

Problem 5
Rewrite the makeamat program (page 63) in such
a way that it has two parameters corresponding to
the number of rows and number of columns
rather than asking the user to enter them.

Problem 6
To see why variables used within functions have
to be local, use the function to the right. If a=2
and b=3, first evaluate f(a)*f(b), and then
evaluate f(b)*f(a). What happens in each case?
Don't try it on your calculator, since it will give
you an error.
Note: Assume that once x gets a value at the
beginning of the function, it won't change during
the execution of the statements in the function.

Problem 7
Write a recursive function that, given an input
value of N, computes N + N-1 +.....+ 2 + 1

Problem 8
Write a program jumpjack that let a stick figure
jumps across the screen (see the stick figure
program in section Fout! Verwijzingsbron niet
gevonden. Fout! Verwijzingsbron niet
gevonden. on page 47).

Problem solving and Program design using the TI-92 81

Statement Result

4+5!x 9
getType(x) "NUM"
7!y 7
getType(y) "NUM"
x+3*y!x 30
getType(x) "NUM"
3.141592654!pi 3.141592654
getType(pi) "NUM"

8. Data Types

With the "information age" comes the need to
handle large quantities of data. Data is stored in a
variety of ways, including lists, arrays, and tables.
The way you store data usually depends on how
you want to process it. In this chapter, you will
learn about different kinds of data, methods of
storing data, and programming techniques to
process data in a variety of ways.

When you hear the word "data", you probably
think of numerical data (statistics or numbers). In
general "data" refers to any kind of input that a
computer accept. This is also true for the TI-92.
Data could include numbers, strings of characters,
lists, matrices or other kinds of input.

The getType() command, when applied to a
variable, tells you what type of data the variable
represents. In this chapter, you will be working
with six data types:
• Real numbers
• Expressions
• String Variables
• List Variables
• Data Variables
• Matrix Variables.

8.1 Real Numbers
This is the data type that you are most likely to
think of when you see the word "data". On the
TI-92, any variable, expression, or function that
can be evaluated to a numerical result returns the
type real number: "NUM" when you apply
getType()
to it.

1. From the Home screen, press ˆ¸ to

clear all values stored to one-character
variables.

2. Enter the statements shown to the right.
Each getType() returns the value "NUM".

8.2 Expressions
An expression is any statement that includes at
least one variable that has not been assigned a

82 Problem solving and Program design using the TI-92

Statement Result

"hello"!s1 "hello"
"there"!s2 "there"
sl&" "&s2!s3 "hello there"
right(s2,4) "here"
left(sl,2) "he"
mid(s2,2,3) "her"

Statement Result

x+3!y x+3
getType(y) "EXPR"
x+z!w x+z
getType(w) "EXPR"
abs(x)!y |x|
getType(y) "EXPR"
sin(x)!y sin(x)
getType(y) "EXPR"

Statement Result

"m"!s "m"
getType(s) "STR"
"ton"!t "ton"
getType(t) "STR"
t&t!u "tonton"
getType(u) "STR"

value. Therefore, any variable quantity that
cannot be evaluated as a single numerical value is
an expression.
If the variables in the expression represent real
numbers, you can use any of the same operations
in the expression that you can use with real
numbers. You also can use additional commands
such as expand(), solve() and factor().

1. On the Home screen, press ˆ¸ to clear

all values stored to one-character variables.
2. Enter the statements shown to the right.

Each getType() returns the value "EXPR".

8.3 String Variables
Any collection of characters surrounded by
double quotation marks (") is considered a string
even if the characters also make a sensible
variable name or algebraic expression.
The operations you can use on strings are
different from numerical operations.

1. On the Home screen, press ˆ¸ to clear

all values stored to one-character variables.
2. Enter the statements shown to the right. To

type &, press2H.
Each getType() returns the value "STR".

Note

: & represents concatenation. The strings
separated by & are placed side by side in the list
of statements in such a way that t&t has the value
"tonton".

The functions right(str,num) and left(str,num)
return the rightmost and leftmost num (number
of) characters of str (string), respectively.
Entering mid(str,first,num) returns the num
characters of str starting in position first.

1. On the Home screen, enter the statements

shown to the right.
2. Compare your results to those given.

Other useful string functions are:

Problem solving and Program design using the TI-92 83

Statement Result

s3 "hello there"
inString(s3,"the") 7
inString(s3,"he") 1
inString(s3,"them") 0
"3*2+5"!s4 "3*2+5"
expr(s4) 11
string(3+4/2) "5"
string(b+5) "b+5"
string(expr(s4)) "11"
expr("dim(sl)") 5

Local countstr
Define countstr()=Prgm
 While String Not Empty
 Search for Next Substring
 Increase Count
 Save Rest of String
EndPrgm

• expr()

Converts a string into a numerical or
functional expression, then evaluates or
executes it.

• string()
Converts a numerical expression into a string.

• dim()
Returns the length of a string.

• inString(srcString,subString)
Returns the beginning position of substring if
it occurs within srcString, and zero otherwise.

1. On the Home screen, enter the statements

shown to the right.
2. Compare your results to those given.

8.3.1 Create a Count Letters Program: An
Example

To demonstrate the use of some of the string
functions, let’s write a subroutine that counts the
number of times the letters th appears together in
a string. You can use inString() to find the first th,
but then you must remove the first part of the
string to avoid counting the same th over and
over. With the right() function, you can keep only
the part of the string you haven't examined yet.
Think about the tasks to solve the problem and
then write your program design.

84 Problem solving and Program design using the TI-92

Count_th()
Prgm
¨ ****** SUBROUTINE *******
¨ Count "th" in a sentence
Local countstr
Define countstr()=Prgm
 str»tempstr
 0»count
 dim(tempstr)»lenght
 While lenght>0
 inString(tempstr,"th")»nextpos
 If nextpos>0 Then
 count+1»count
 Else
 Exit
 EndIf
 right(tempstr,lenght-nextpos-1)»tempstr
 dim(tempstr)»lenght
 EndWhile
EndPrgm

Local indat
Define indat()=Prgm
ClrHome
ClrIO
InputStr "Please give a sentence",str
EndPrgm

Local out
Define out()=Prgm
Disp "","The number of th ="&string(count)
EndPrgm

¨ ****** MAIN ROUTINE ******
indat()
countstr()
out()
DelVar str,count,lenght,tempstr,nextpos
EndPrgm

Statement Result

{1,4,9,16}!L1 {1 4 9 16}
getType(L1) "LIST"
{1,4,8,16}!L2 {1 4 8 16}
getType(L2) "LIST"
{1,4,6,8,10}!L3 {1 4 6 8 10}
getType(L3) "LIST"

A subroutine that could result from the program
design is shown to the right.

1. Start a new program in the Program Editor

and name it countth.
2. Enter the countstr subroutine as shown to the

right.

3. Add input and output subroutines.

Tip: Instead of using the Input command to
enter strings, which means you must include
quotation marks on all input strings, you can
use the InputStr command, which allows you
to enter the input strings without the
quotation marks.

Note

: If you enter the string "This is the end,"
the program counts only one th since Th with
a capital T is considered to be a different
string.

4. Try the program with a variety of input
strings.

8.4 List Variables
Lists are collections of other kinds of data. They
are represented as a series of data values enclosed
in braces. For example, {a,8,"hi",_, -1.88} is a list.

1. On the Home screen, press ˆ¸ to clear

all values stored to one-character variables.
2. Enter the statements shown to the right. Each

getType() returns the value "LIST".
Note

: You must enter a list using commas, but
its value is shown with spaces.

Problem solving and Program design using the TI-92 85

Statement Result

L1 {1 4 9 16}
L2 {1 4 8 16}
L3 {1 4 6 8 10}

L1+L2 {2 8 17 32}
§(L1) {1 2 3 4}
L1/L2 {1 1 9/8 1}
Ll-L3 Error: Dimension mismatch

L2^3 {1 64 512 4096}
L2^(-1) {1 1/4 1/8 1/16}

dim(L1) 4

L1[4] 16
L2[3] 8
L2[5] Error: Dimension

findkey()
Prgm
• Get Input
• Generate List
• Search List for Specified Number
• Print Location

¨ MAIN R0UTINE
Invoke Subroutines
EndPrgm

You can perform mathematical operations on
lists.

1. On the Home screen, enter the statements

shown to the right.
2. Compare your results with those given.

Note

: The dim() command works on both lists
and strings. This is also true of right(), left() and
mid()

You can access individual members of a list by
specifying a position within brackets as shown to
the right.

1. On the Home screen, enter the statements

shown to the right.
2. Compare your results with those given.

8.4.1 Findkey, a List Variables Program: An
Example

Now try writing a program that uses lists. The
program in section 6.5.2 on page 64 generates a
list of the zeros of an expression. This time write
a program to search a list of values for a specified
number (often called the "key").

The program design might be as shown to the
right.

Your program should tell the user the first
position that contained the number (key). If key
isn't found, display Key not found or else return a
position of 0.

86 Problem solving and Program design using the TI-92

findkey()

Prgm
¨ Get input
Local indat
Define indat()=Prgm
 Input "Numbers in your list: ",length
 Input "Largest integer in list:",maxn
 Input "Number you wish to find: ",key
EndPrgm

¨ Generate the list
Local makelist
Define makelist()=Prgm
 newList(length)=list1
 For i,1,length
 rand(maxn)»list1[i]
 EndFor
EndPrgm

¨ look for key
Local keyhunt
Define keyhunt()=Prgm
 1»position
 While list1[position]�key and positionœlength
 position+1»position
 If position>length
 Exit
 EndWhile
EndPrgm

¨ print out results
Local outdat
Define outdat()=Prgm
 If positionœlength Then
 Disp "Key found at position:"&string(position)
 Else
 Disp "Key not found in list"
 EndIf

1. Start a new program in the Program Editor

and name it findkey.
2. The subroutine to get the input asks the user

to enter how many numbers are in the list, the
largest integer allowed in the list, and the
number for which to search.

Enter the indata subroutine as shown to the
right.

3. Now let's generate a random list using rand(n)
to produce random values between 1 and n.
The newList() command is like the newMat()
command you used in section 6.5.2 except it
creates a list instead of a matrix.
Enter the makelist subroutine after the indat
subroutine.

4. Next, write a subroutine to compare the key to

each list element until the key is found. One
possible approach is to use a While ...
EndWhile loop.
Enter the keyhunt subroutine. To type ≠, press
2Ø or eÁ.
Examine the keyhunt subroutine carefully. Do
you see a bug in it. What happens if the key
isn't in the list?

5. If you run this subroutine with a key that isn't
in the list, you get an error. The loop runs
until Position is equal to length. Since key
isn't found, Position would become length+1.
The next repetition of the loop tries to
examine list1[length+1], which doesn't exist,
so you get a dimension error.
To avoid this difficulty, add two conditions to
your loop: one to check whether or not the
key is found and one to make sure you haven't
gone beyond the end of the list.
Modify the keyhunt subroutine as shown on
the right.
Now the loop ends if either the key is found
or the end of the list is passed.

6. Finally, you need to tell the user if the key

was found, and if so, where. You can tell that
the key was found if position ≤ length, since
position equals one more than length if the
key isn't in the list.
Enter the output subroutine, outdat.

Problem solving and Program design using the TI-92 87

¨ ****** MAIN ROUTINE ******
ClrHome
ClrIO
indat()
makelist()
keyhunt()
ClrIO
outdat()
Pause
DispHome

EndPrgm

Statement Result

Dat1 Error:

Non-algebraic
 variable in expression

Dat1[1] {1 2 3 4}

Dat1[3] {"a" "b" "c"}

Dat1[21[3] 5

Dat1[3][2] "b"

Statement Result

{1, 2, 3, 4}»Ll {1 2 3 4}

{3, 4, 5, 6}»L2 {3 4 5 6}

{"a","b","c"}»L3 {"a" "b" "c"}

NewData Dat1,L1,L2,L3 Done

getType(Dat1) "DATA"

7. Add the main routine to call the above
subroutines.

8. Run the findkey program with a variety of

inputs, including once where the key is not in
the list.

Hint

. You can make sure that the key is not in
the list by making the list entries in the range
1 to maxn and setting the key to be maxn+1.

This program searches for a number in a list
of random numbers. The list can be letters as
well as numbers, and you can search for a
character or a string of characters.

8.5 Data Variables
The basic framework of findkey can be modified
to solve other searching problems. The final
example in section 8.7.1 on page 96 is just such a
program.

A data variable is a list of lists, that is, a
collection of lists, which can be different lengths.
You can construct a data variable using the
NewData command, which specifies the name of
the new variable followed by the names of the
lists that make it up. You cannot display a data
variable directly on the Home screen, but you can
display the individual lists that make it up.

1. On the Home screen, enter the statements

shown to the right.
The gettype() command returns the value
DATA.

2. The statements shown to the right illustrate

how to access the elements of a data variable.
Compare your results to the ones shown.
Since Dat1[2] and Dat1[3] are lists you can
access specific elements of these lists by
adding a second bracketed number.

88 Problem solving and Program design using the TI-92

[[1,2,3][4,5,6]]»mt1
[[1,3,5][2 4 61]»mt2
[[3,2,1][2,1,3][3,1,2]»mt3

Statement Result

mt1
1 2 3

4 5 6

 
  

mt2
1 3 5

2 4 6

 
  

mt3

3 2 1

2 1 3

3 1 2

 
 
 
  

mt1.+mt2
2 5 8

6 9 12

 
  

mt1.-mt2
0 -1 -2

2 1 0

 
  

mt1.*mt2
1 6 15

8 20 36

 
  

mt1*mt3
16 7 13

40 19 31

 
  

mt1./mt2
1 2/3 3/5

2 5/4 1

 
  

mt1.^mt2
1 8 243 

  

8.6 Matrix Variables
A matrix is a rectangular array of numbers (see
section 6.5.1: "Create and Fill a Matrix: An
example" on page 61). In some ways it resembles
a data variable, except that all the lists that make
it up must be the same length, and unlike a data
variable, a matrix can be displayed and operated
on.

The mathematical operations that are available
for matrices are addition (.+), subtraction (.-),
multiplication (.*), matrix multiplication (.*),
division (. /) and exponentiation (.^). In each
operation beginning with a period (.) the
corresponding elements of the matrices are
combined using that operation.

1. On the Home screen, define three matrices as

shown to the right.
The elements in the first pair of brackets
define the first row of the matrix, the second
set of elements is the second row, etc.

2. You can perform mathematical operations on
the matrices. On the Home screen, enter the
statements to the right. Compare your results
with those given.

In addition to these operations, you also can raise
square matrices (but not nonsquare matrices) to
positive and other negative powers. Positive
powers correspond to repeated matrix
multiplication, the -1 power equals the inverse (if
it exists), and other negative powers correspond
to repeated matrix multiplication of the inverse.

To multiply two matrices, the number of elements
in each row of the first matrix must equal the
number of elements in each column of the second
matrix. Therefore, mt1*mt2 is undefined, since
mt1 has three columns but mt2 only has two
rows.

Note

: If you accidentally leave out the period,
addition and subtraction still work the same way,
but division and exponentiation are undefined.
Matrix multiplication is represented by" *", while
entry-by-entry multiplication is represented
by ".*".

Problem solving and Program design using the TI-92 89

For k,l,Cl
 mat3[i,j]+mat1[i,k]*mat2[k,j]»
 mat3[i,j]
EndFor

newMat(Rl,C2)»mat3
For i,1,Rl
 For j,1,C2
 For k,1,Cl
 mat3[i,j]+mat1[i,k]*mat2[k,j] »mat3[i,j]

 EndFor
 EndFor
EndFor

Hint

: To multiply two matrices, you multiply each
row of the first matrix by each column of the
second matrix. Multiplying a row by a column
means multiplying the corresponding elements
and then summing all the products.

8.6.1 Matrix multiplication: An Example
To multiply two matrices, you need an outer loop
to take care of the rows, an inner loop to take care
of the columns and an "inner" inner loop to
handle the actual multiplication.

This innermost loop is shown to the right. The
dimensions of mat1 are R1 x C1 and the
dimensions of mat2 are R2 x C2, where Cl=R2.
The multiplication result is stored into mat3.

This loop multiplies the corresponding entries in
row i of mat1 and column j of mat2 and adds
them into position [i,j] of mat3

Putting this loop inside two outer loops that
control the rows of mat1 and the columns of mat2
gives you a subroutine that multiplies mat1 by
mat2.

Try building these statements into a program and
applying it to mt1 and mt3 above. It will be
helpful to apply the statements yourself to see
what is happening.

8.7 Data Types and Databases
Now, let's write a program that uses some of the
data types and programming ideas discussed in
the previous sections. The next program uses a
database, a collection of values organized in a
specific structure, to answer a variety of
questions.

Creating the Database
You can store information in a database with the
Data/Matrix Editor.
Suppose you want to create a database of names,
addresses, telephone numbers, and balances owed
to your company. You can store the first name,
last name, street address, city, country, zip-code
and telephone number as separate elements of a

90 Problem solving and Program design using the TI-92

"First name"
"Last name"
"Street"
"City"
"Country"
"Zip-code"
"Telephone"

list with one list per person. The lists are stored as
a data variable.

1. Press O to start a new data variable in he

Data/Matrix editor, select 6:Data/Matrix
Editor, and then select 3: New. Press DD
and type datafile as the name of the new
variable.

2. Press ¸¸ to store the variable name

and display an empty variable in the
Data/Matrix Editor.

3.
The cursor is in the first entry of the first
column (cl). You are now ready to enter data.

4. Type each of the elements as shown,

including the quotation marks. Press ¸
after each one.

You should now have seven items of
information in the first seven rows (cells) of
the first column.

To edit any mistakes or change an entry, use
the cursor key to go to the required cell.

Note

: If all of the information does not fit in a
cell, the first five characters are displayed,
followed by an ellipsis

5. When you have finished typing in all the
information, press 2K to exit the
Data/Matrix Editor and return to the Home
screen.

"Ton" "Lilian"
"Maree" "van Erk-Frijters"
"Kruburg 74" "De Koppele 395"
"Eindhoven" "Eindhoven"
"Netherlands" "Netherlands"
"5632 PJ" "5632 LN"
"+31-40-2421694" "+31-40-2426010"

"Martijn" "end"
"van Dongen" "end"
"Rachelsmolen 1" "end"
"Eindhoven" "end"
"Netherlands" "end"
"5612 MA" "end"
"+31-40-2605344" "end"

Problem solving and Program design using the TI-92 91

Note

: An empty cel: is a pair of quotation marks
with a space between them.

8.7.1 Access information in a NAC database:
An Example

Problem
Create a program, which can access the database
created above, and retrieve the information when
given a customers last name. Assume each last
name is unique.

To solve this problem we will use the software
development method described in chapter 4.

Analysis
The first step in the analysis of this problem is to
divide the main problem into smaller
subproblems.
A possible analysis could give these three
subproblems:

• Input the customers last name:
This is a problem we have seen before and can be
easily solved.

• Access the database to find the customer:
This problem is more difficult and therefore has
to be studied more deeply.
First we have to find a method to access the
database.
Second we must check if the customers last name
coincides with the field "last name" in the
database. To do this we need a search routine
which checks all entries in the "last name" field
and compare the result with the entered customer
name.
Third we continue the search until the name is
found in the database or the end of the database is
reached. If the customer is found the location of
the customer has to be saved into memory to
display the information in a later stage.

• Retrieve and display the customer

information.
The search can result into two solutions. Either
the name is found and the customer information
has to be displayed (location is saved) or the
name has not been found (location is not saved)

92 Problem solving and Program design using the TI-92

¨ Input customer name
Local inputnam
Define inputnam()=Prgm
 Inputstr "Enter customers last name",lastname
EndPrgm

¨ Find customer in database
Local Findcust
Define Findcust()=Prgm
 false»Found
 0»loc
 While not(found)
 loc+1»loc
 If lastname=(chuzdata[loc])[2] then
 true»Found
 Elseif (chuzdata[loc])[2]="end" then
 Exit
 Endif
 EndWhile
EndPrgm

and a message saying “name not found” has to be
displayed.

Looking back at the subproblems already some
variables can be defined for later use in the
program:

Lastname Customers last name
Found Customer found in database
Chuzdata Database
Loc Location of customer

information in database.

Design
A possible design of the program is shown to the
right.

Implementation
Now we will write our program Chuzcus() in the
program editor. First type the program listing for
the input customer subroutine.

Input customer subroutine.
We will call the subroutine Inputnam(). When
asking for the customer name we have to be sure
that the variable “lastname” will be off the type
string. Using the Inputstr command can do this.

Find customer in database
The subroutine for this section we will call
findcust(). To search the database we must make
use of a loop. Because we do not know the size of
the database we cannot use the For..Endfor
statements. Instead we will use the
While..EndWhile statements.
Before we can enter the While loop, we first have
to initialize the variables found and loc (location)
to respectively false (i.e. customer name not
found) and 1 (first column). The while loop will
continue to until the customer is found or until
the end of the database is reached (if statement
combined with Exit).

Chuzcus()
Prgm
¨ This program displays information about a customer
by retrieving information from a database

****** Subroutines *******
 Input customer name
 Find customer in database
 Display customer information

****** Main Routine ******
 Invoke subroutines

EndPrgm

Problem solving and Program design using the TI-92 93

¨ Display information
Local Dispinfo
Define Dispinfo()=Prgm
 If Found="no" then
 Disp "Customer not found"
 Else
 Disp "First name:"&(chuzdata[loc])[1]
 Disp "Last name:"&(chuzdata[loc])[2]
 Disp "Address:"&(chuzdata[loc])[3]
 Disp "Zip code:"&(chuzdata[loc])[6]
 Disp "City:"&(chuzdata[loc])[4]
 Disp "Country:"&(chuzdata[loc])[5]
 Disp "Telephone:"&(chuzdata[loc])[7]
 Disp ""
 Endif
EndPrgm

¨ ****** MAIN ROUTINE ******

Inputnam()
Findcust()
Dispinfo()

Display Information
The subroutine for this section is called
Dispinfo(). The two possible solutions to the
search subroutine (found=true or found=false) are
now evaluated with an If..Then statement. In case
of found=false the message “customer not found”
will be displayed. In case of found=true the
customer information will be displayed on the
screen using the variable location to extract the
information for address etc. from the database
chuzdata.

Main Routine
The main routine is for the program Chuzcus() is
shown to the right.

Testing
The program can now be tested using several
different customer names including names listed
and names not listed in the database.
Possible errors are:

- typing errors,
- no database called chuzdata present,
- no “end” column to indicate the end of the

database,
- to few Endprgm, Endwhile or Endif

statements,
- Etc..

94 Problem solving and Program design using the TI-92

¨ Restart program subroutine
Local Again
Define Again()=Prgm
 Loop
 Inputstr "Again (y/n)",yesno
 If yesno="y" or yesno="Y" then
 Exit
 elseif yesno="n" or yesno="N" then
 Delvar yesno,loc,found,lastname
 Stop ¨ Stops program
 Endif
 Endloop
EndPrgm

¨ ****** MAIN ROUTINE ******

Loop
 ClrIO
 Inputnam()
 Findcust()
 ClrIo
 Dispinfo()
 ClrIO
 Again()

Maintenance
The last step in solving the problem is
maintaining the program. This step includes
making the program look good, cleaning up
variables and making the program more user
friendly. You can also optionally test for the
existence of the database.

1. Making the program looks good.

This can be done by adding several ClrIO
statements at tactical positions in the main
routine.

2. Cleaning up variables.

Add the Delvar-statement to the program

3. Making the program more user friendly.

This part of the maintenance can go into
several directions. For instance you can make
look better, but this has been done already in
the first option. You can also think about
making it possible to search for another
customer without leaving the program.
A possible solution (as a subroutine) is given
to the right. This subroutine is combined with
the Loop..EndLoop statements in the main
routine.

4. A test can be done using the Gettype(var)

command to see if the variable Chuzdata is of
the type “Data”. If not the program will stop.

¨ Check to see if chuzdata exists
Local Exist
Define Exist()=Prgm
 if gettype(chuzdata)�"DATA" then
 Disp "Database Chuzdata has not been
found or"
 Disp "variable Chuzdata is not a database"
 Disp " "
 Stop
 Endif
EndPrgm

96 Problem solving and Program design using the TI-92

chuzcus()
Prgm
¨ This program displays information about a customer
by retrieving information from a database

¨ ****** SUBROUTINES ******

¨ Input customer name
Local inputnam
Define inputnam()=Prgm
 Inputstr "Enter customers last name",lastname
EndPrgm

¨ Find customer in database
Local Findcust
Define Findcust()=Prgm
 false»Found
 0»loc ¨ counter for location (column)
 While not(found)
 loc+1»loc
 If lastname=(chuzdata[loc])[2] then
 true»Found
 Elseif (chuzdata[loc])[2]="end" then
 Exit
 Endif
 EndWhile
EndPrgm

¨ Display information
Local Dispinfo
Define Dispinfo()=Prgm
 If Found=false then
 Disp "Customer not found"
 Disp "Press enter to continue"
 Pause
 Else
 Disp "First name: "&(chuzdata[loc])[1]
 Disp "Last name: "&(chuzdata[loc])[2]
 Disp "Address: "&(chuzdata[loc])[3]
 Disp "Zip code: "&(chuzdata[loc])[6]
 Disp "City: "&(chuzdata[loc])[4]
 Disp "Country: "&(chuzdata[loc])[5]
 Disp "Telephone: "&(chuzdata[loc])[7]
 Disp "Press Enter to continue"
 Pause
 Endif
EndPrgm

¨ Restart program subroutine
Local Again
Define Again()=Prgm
 Loop
 Inputstr "Again (y/n)",yesno
 If yesno="y" or yesno="Y" then
 Exit
 elseif yesno="n" or yesno="N" then
 Delvar yesno,loc,found,lastname
 Stop ¨ Stops program
 Endif
 Endloop
EndPrgm

¨ Check to see if chuzdata exists
Local Exist
Define Exist()=Prgm
 if gettype(chuzdata)�"DATA" then
 Disp "Database Chuzdata has not been found or"
 Disp "variable Chuzdata is not a database"
 Disp " "
 Stop
 Endif
EndPrgm

¨ ****** MAIN ROUTINE ******

ClrIO
Exist()
Loop
 ClrIO
 Inputnam()
 Findcust()
 ClrIo
 Dispinfo()
 ClrIO
 Again()
EndLoop

EndPrgm

The final program
The final program listing is shown below.

Problem solving and Program design using the TI-92 97

8.8 Summary of Commands

dim(list) ⇒ integer
 Returns the dimension of list.
 For example:

 dim(0,1,2) ¸ returns: 3

dim(matrix) ⇒ list
 Returns the dimensions of matrix as a two-element list

{rows, columns}.
 For example:

 dim([1,-1,2;-2,3,5]) ¸ returns: {2,3}

dim(string) ⇒ integer
 Returns the number of characters contained in character string

string.
 For example:

 dim("Hello") ¸ returns: 5
dim(" Hello"&" there") ¸ returns: 11

expr(string) ⇒ expression
 Returns the character string contained in string as an expression

and immediately executes it.
 For example:

 expr("3+4+x^5+2x+x")¸ returns: x5+3x+7

getType(var) ⇒ String
 Returns a string indicating the TI-92 data type of variable var .
 For example:

 {1,2,3} ! temp ¸ returns: {1 2 3}
getType(temp) ¸ returns: "LIST"

Data Type

 "DATA" Data type
Variable Contents

 "EXPR" Expression (includes complex/ arbitrary/ undefined, ∞,
-∞, TRUE, FALSE, pi, e)

 "FUNC" Function
 "LIST" List
 "MAT" Matrix
 "NONE" Variable does not exist
 "NUM" Real number
 "PIC" Picture
 "PRGM" Program
 "STR" String
 "TEXT" Text type
 "VAR" Name of another variable

inString(srcString,subString) ⇒ integer

Returns the character position in string srcString at which the first
occurrence of string subString begins.

98 Problem solving and Program design using the TI-92

 For example:

 inString("Ton is there","the")¸ returns: 8

left(srcString[,num]) ⇒ string
 Returns the leftmost num characters contained in character string

srcString .
 For example:
 If you omit num , returns all of srcString.

 left("Martijn",2) ¸ returns:"Ma"

left(list1[,num]) ⇒ list
 Returns the leftmost num elements contained in list1.
 For example:
 If you omit num, returns all of list1.

 left({1,2,-3,4},3) ¸ returns: {1 2 –3}

mid(srcString,start[,count]) ⇒ string
 Returns count characters from character string srcString ,

beginning with character number start.
 For example:
 If count is omitted or is greater than the dimension of srcString,

returns all characters from srcString , beginning with character
number start.

 mid("Hello there",1,5)¸ returns: "Hello"

 For example:
 count must be ≥ 0. If count = 0, returns an empty string.

 mid("Hello there",2)¸ returns: "ello there"

mid(srcList,start[,count]) ⇒ list
 Returns count elements from srcList, beginning with element

number start.
 For example:
 If count is omitted or is greater than the dimension of srcList,

returns all elements from srcList , beginning with element number
start.

 mid({9,8,7,6},2,2)¸ returns: {8 7}

 For example:
 count must be ≥ 0. If count = 0, returns an empty string.

 mid({9,8,7,6},3)¸ returns: {7 6}

newList(numElements) ⇒ list
 Returns a list with a dimension of numElements . Each element is

zero
 For example

: newList(7)¸ returns: {0 0 0 0 0 0 0 0}

newMat(numRows,numCols) ⇒ matrix
 Returns a matrix of zeros with the dimension numRows by

numCols.

 For example:  
  
0 0 0 0 0 0 0
0 0 0 0 0 0 0

 newMat(7,2)¸ returns:

Problem solving and Program design using the TI-92 99

right(list1,num) ⇒ list
Returns the rightmost num elements contained in list1

 For example:

 right({1,2,3,4,5,6,7},3)¸ returns: {5 6 7}

right(srcString,num) ⇒ string
Returns the rightmost num characters contained in character string
srcString.

 For example:

 right("Hello Ton",2)¸ returns: "on"

string(expression) ⇒ string

Simplifies expression and returns the result as a character string.
 For example:

 string(7+45)¸ returns "52". The string "52" represents the
characters "5" and "2", not the number 52.

 string(0.1234567) returns: "0.1234567"
string(1+2)¸ returns: "3"
string(sin(π/6) +7) returns: "15/2"

100 Problem solving and Program design using the TI-92

8.9 Practical problems
Try the following exercises. Be sure to write a
complete function or program using top-down
program design, functions and subroutines where
needed.

Problem 1
Write a program named reverse that takes any
string and writes it out backward.

Problem 2a / 2b
Write a program that takes any string and
determines whether it is a palindrome.
Note

Problem 2a: use "reverse" from Problem 1

: A palindrome is a word or string like
"madam" or "redivider" that reads the same
forwards and backwards.

Problem 2b: use "compare characters"

Problem 3
Write a program to create a list arblist whose
length and elements are chosen by the user.

Problem 4
Modify the findkey program in section 8.4.1 on
page 85 to find every occurrence of the desired
key instead of only finding the first occurrence.

Problem 5
Modify the findkey program in section 8.4.1 on
page 85 save all occurrences of the key as a list
and then display the list.

Problem 6
Write a subroutine to imitate the effect of .+ for
matrices. Your subroutine should take two
matrices and produce the matrix whose elements
are the sums of the corresponding elements in the
two original matrices.

Problem 7
Modify the chuzcus program on page 96 to
search for entries by other fields. That is, expand
the program in such a way that you can look up
entries by address, telephone number, or ZIP code
as well as by last name. Assume that each entry is
unique.

Problem solving and Program design using the TI-92 101

Problem 8
Expand the chuzcus program in Problem 7 in
such a way that you can input entries.

Problem solving and Program design using the TI-92 103

9. Menus and dialog boxes

To access many of the features of the TI-92, you
use toolbar menus and dialog boxes.
For example, the Home screen provides
selections for six menus.

When opening an existing program in the
Program Editor, you see a dialog box that allows
you to select programs or functions, folder names,
and variable names. In this chapter, you will learn
how to create your own menus and dialog boxes.

9.1 Designing Multiple Menus

Let's look at a program that uses more than one
menu to control input.

Suppose that you want to set up an address list on
your TI-92. At first glance, this seems fairly easy
since you need to enter a name, a street address, a
ZIP code and a city. As you look through your
address book, however, you begin to realize that
many addresses don't follow this pattern. For
example, a business address needs an entry for
the company name, and a foreign address needs
an entry for the country. Therefore, the form of
your input will depend on the kind of address
you're entering.

The toolbar provides a perfect solution to the
problem of differently formatted inputs. You can
put entries in the menu corresponding to the
different kinds of addresses and then request the
appropriate information for the given type of
address. Let's assume that you have three types:
personal, business, and foreign. Therefore, you
want an input subroutine for each type of address.

104 Problem solving and Program design using the TI-92

address1()
Prgm
¨ ****** SUBROUTINE *******
Local persinfo ¨ Personal Address
Define persinfo()=Prgm
 Input "Name:",name
 Input "Street Address:",addr
 Input "Zip code and City:",zccity
EndPrgm
¨ ****** SUBROUTINE *******
Local businfo ¨ Business Address
Define businfo()=Prgm
 Input "Name:",name
 Input "Company: ",comp
 Input "Street Address:",addr
 Input "Zip code and City:",zccity
EndPrgm
¨ ****** SUBROUTINE *******
Local forinfo ¨ Foreign Address
Define forinfo()=Prgm
 Input "Enter Name:",name
 Input "Enter Street Address:",addr
 Input "Postal Code and City:",pccity
 Input "Enter Country:",country
EndPrgm

¨ ****** MAIN ROUTINE ******

ClrHome
Toolbar ¨ Selecting Format
 Title "Address Formats"
 Item "Personal",pers
 Item "Business",busi
 Item "Foreign",forn
EndTBar
Lbl pers
 persinfo()
 Goto finish
Lbl busi
 businfo()
 Goto finish
Lbl forn
 forinfo()
Lbl finish

EndPrgm

1. Start a new program in the Program Editor

and name it address1

2. Enter the three subroutines shown to the right.

3. Create a toolbar menu to allow the user to

select an address format.
Each item statement

 corresponds to a label.
Each label is followed by a statement to call
one of the three input subroutines. Enter the
program lines shown to the right after the
input subroutines.

Problem solving and Program design using the TI-92 105

¨ ******* MAIN ROUTINE ******

Toolbar ¨ Selecting Format
 Title "Address Formats"
 Item "Personal",pers
 Item "Business",busi
 Item "Foreign",forn
EndTBar
Lbl pers
 persinfo()
 Goto finish
Lbl busi
 businfo()
 ToolBar
 Title "Additional Information"
 Item "Department Name",dept
 Item "Job Title",jobt
 Item "None",finish
 EndTBar
 Lbl dept
 Input "Department Name:",deptname
 Goto finish
 Lbl jobt
 Input "Job Title:",jobtitle
 Goto finish
Lbl forn
 forinfo()
 ToolBar
 Title "Additional Information"
 Item "Province",prov
 Item "None",finish
 EndTBar
 Lbl prov
 Input "Province Name:",province
Lbl finish
EndPrgm

EndPrgm

4. Not only are there options for the kind of
format you want, but within each format there
could be choices, such as a department name
or a job title in the business address, or a
province name in a foreign address.
To cover these possibilities, add additional
toolbar menus to be displayed when the user
selects either the business or foreign address
format.

5. Return to the Home screen and run the

address1 program.

After you enter a complete address, press ‡
to return to the Home screen. You then can
run the program again.

Notice that although the Home screen has six
menu selections across the top of the screen,
the Toolbar command can only create one
menu at a time.

In this example, the first Toolbar command
created the menu, which allowed you to
choose among personal, business, and foreign
addresses. Then, once you selected business,
for example, that menu vanished and was
replaced by the Additional Information menu.

Note

: You cannot nest Toolbar commands to
keep multiple menus on the screen
simultaneously.

9.2 Creating Dialog Boxes

Another method of communicating with the
TI-92 is the dialog box. For example, when you
press O 7:Program Editor, and then
select 2:Open, the Open dialog box is displayed.

You can create dialog boxes with the
Dialog...EndDlog construct. Your dialog box must
contain a set of choices, a request for values, or a
message.

106 Problem solving and Program design using the TI-92

textbox1()
Prgm
¨ Displays Dialog Box with Message
ClrHome
Dialog
 Text "Welcome to the TI-92."
EndDlog
EndPrgm

textbox2()
Prgm
¨ Displays Titled Dialog Box with Message
Dialog
 Title "Greetings"
 Text "Welcome to the TI-92."
EndDlog
EndPrgm

Commands that define what the dialog box will
do are placed between Dialog and EndDlog. The
four commands you can use within this construct
are:
• Text
• Title
• Request
• DropDown

If you try to put any other command within this
construction, you'll get a syntax error message.

The Text Command
The simplest dialog box is one that only contains
a message. To display a message, use the Text
command. After you read the message, you can
press either ¸ or N to close the box.

The short example program textbox1() on the
right displays an untitled dialog box with the
message, "Welcome to the TI-92."

The Title Command
To give a dialog box a title (like the word OPEN
at the top of the Open dialog box shown above),
use the Title command. However, you cannot use
the Title command alone in a dialog box (you'll
get a syntax error); a dialog box must contain
something in addition to a title.

The example program displays the dialog box
from the previous example but this time with the
title "Greetings".

Problem solving and Program design using the TI-92 107

inpbox1()
Prgm
¨ Gets Data Via a Dialog Box
ClrHome
Dialog
 Request "Enter a number",x
 Request "Enter a string",strl
EndDlog
EndPrgm

The Request Command
Although you can create a dialog box simply to
display a message, dialog boxes usually provide a
way to enter information, just as the TI-92 uses
the Open dialog box to get the name of the
program you want to open.

There are two commands to enter information in
a dialog box. The first is the Request command.
This command displays a prompt followed by an
input box. The data you enter in the input box is
assigned to a variable. If the variable already has
a value, that value will be displayed in the input
box initially as a default value.

The data you input is interpreted as a string.
Therefore, if you type 423 into the input box, the
string value "423" will be stored in the variable.
To convert this input into a numerical value, use
the expr() command.

The example program inpbox1() on the right
creates two input boxes when executed, one for
each Request command.

Run the program.

After the program runs, type each variable name
again on the entry line on the Home screen. The
values of bot x and str1 will be strings.

The DropDown Command
The DropDown command provides a second way
to enter data via a dialog box. This command
should be used when you have a limited number
of possible values for a variable and you want to
ensure that the user only selects one of those
possibilities. The DropDown command displays a
drop-down menu from which the user can select a
value.

108 Problem solving and Program design using the TI-92

ansbox1()
Prgm
¨ Gets Multiple Choice Responses
ClrHome
{"A","B","C","D"}»choices
newList(7)»anslist
For i,1,7
 Dialog
 Text "Question nr. "string(i)
 DropDown "Answers",choices,answer
 EndDlog
 choices[answer]»anslist[i]
EndFor
Disp anslist
EndPrgm

Suppose that you want to write a program that
will ask the user for the answers to six multiple-
choice questions. Each question has four choices,
A through D. The example program does this
using dialog box drop-down menus.

1. Start a new program in the Program Editor

and name it ansbox1.
2. Enter the program lines as shown to the right.

It is important to note that the DropDown
command returns the number of your
selection, not the selection itself. Therefore,
the program uses the variable choices to list
the letters. Then the proper letter is assigned
to anslist; otherwise, anslist would be a list of
numbers, no letters.

You might try replacing the expression
choices[answer] with answer to see what
effect it has on the contents of anslist.

3. Run the program.

You will see a dialog box with the message
Answers followed by the letter A and an
arrow. To choose A without pulling down the
menu, press ¸. The dialog box for the
next question is displayed.
If you want a different answer, press B to get
the drop-down menu containing the five letter
choices A through E. Select a choice and then
press ¸¸ to exit the dialog box and
get the dialog box for the next question.

9.3 Creating Custom and Pop-Up Menus

The TI-92 provides you two more ways to
communicate through menus: Custom menus and
Pop-up menus. Custom menus allow you to
imitate the toolbar on the Home screen in such a
way that you can have multiple menus available
at the same time. Pop-up menus are similar to
drop-down menus except that they are not
displayed in dialog boxes.

Custom Menus
Although the Toolbar command is flexible and
allows you to do almost anything within a menu,
it is also restrictive because you can only have

Problem solving and Program design using the TI-92 109

one menu at a time. The Custom command has
the exact opposite properties. It is inflexible in
terms of what it allows you to do within its menu,
but it is flexible in allowing you to have multiple
menus available at the same time.

With the Custom command, you specify titles
and items as you do with the Toolbar command.
The Custom command is different, however, in
two respects.
• You can have several titles with each title

representing a new menu.
• You do not use labels in the items, only

strings. (Choosing an item does not send you
to another part of the program but simply
selects the string associated with the given
item.)

Therefore, the Custom command allows you to
create your own menus of TI-92 commands.

Let's look at a simple example. The Home screen
toolbar includes a menu entitled †:Other,
which contains a list of many of the commands.

Suppose you are writing a program that only uses
a few of these commands but uses them often.
With the Custom command, you can set up
separate menus specifying only the commands
you need.

110 Problem solving and Program design using the TI-92

custom1()
Prgm
¨ Experiment with Custom Menus
Custom
 Title "Expressions"
 Item "factor("
 Item "expand("
 Title "Trig"
 Item "tExpand("
 Item "tCollect("
 Title "Fractions"
 Item "getNum("
 Item "getDenom("
 Item "propFrac("
EndCustm
EndPrgm

1. Start a new program in the Program Editor

and name it custom1.
2. Enter the program lines as shown to the right.

Each title represents the title of a new menu.
The strings associated with the items below a
given title are the commands you can access
through that menu.

3. Run the program.

Done appears on the right of the Home
screen.

4. To display the new set of menus, press

2¾. The toolbar changes from the
usual six menus to only three menus labeled
Expressions, Trig, and Fractions.

 Press … to pull down the Fractions submenu.
Then select 2:getDenom((getDenom(appears on
the entry line of the Home screen), ready to
accept an input, just like when you use the
standard menus.

When you use the Custom command, your items
should be strings that you would want to enter on
the entry line.
Note

: To return to the standard toolbar menus,
press 2¾ again.

Pop-Up Menus
The last type of menu command, PopUp, creates
a pop-up menu. Although pop-up menus are
similar to drop-down menus, there are two
differences:
• Pop-up menus do not have titles.
• Pop-up menus cannot appear in dialog boxes.

When you enter the PopUp command, you
specify the choices that will be listed and a
variable name to which the selected choice will
be assigned. If the variable does not have a value
when the pop-up menu is displayed, the first item
in the menu is highlighted.

Problem solving and Program design using the TI-92 111

opmen1()
¨ Pop-Up Menu example
ClrHome
PopUp {"Lilian","Martijn","Ton"},c
ClrIo
Disp "You choose number: "&string(c)
EndPrgm

If the variable already has a value, which is one
of the choices, that value will be highlighted as
the default value.

By entering the program opmen1 on the right,
you can experiment with pop-up menus.

Select 3:Ton

Press N to return to the Home screen.
Store 2  c, and run the program again.

At last Martijn is highlighted.

112 Problem solving and Program design using the TI-92

9.4 Summary of Commands

Custom
 block of statements
EndCustm Sets up a toolbar that is activated when you press 2¾.

It is very similar to the ToolBar instruction (page 136) except that
Title and Item statements cannot have labels.

 Note: 2¾ acts as a toggle. The first instance invokes the
menu, and the second instance removes the menu. The menu is
removed also when you change applications.

Dialog
 block of statements
Endlog Generates a dialog box when the program is executed.

Valid block options in the … I/O , 1: Dialog menu item in the
Program Editor are 1: Text , 2: Request, 4: DropDown , and 7: Title
.

 The variables in a dialog box can be given values that will be

displayed as the default (or initial) value. If ¸ is pressed, the
variables are updated from the dialog box and variable ok is set to
1. If N is pressed, its variables are not updated, and system
variable ok is set to zero.

DropDown titleString,{item1String, item2String,….}
 Displays a drop- down menu with the name titleString and

containing the items 1: item1String , 2: item2String , and so forth.
 DropDown must be within a Dialog... EndDlog block.

If varName already exists and has a value within the range of
items, the referenced item is displayed as the default selection.
Otherwise, the menu’s first item is the default selection.

When you select an item from the menu, the corresponding number
of the item is stored in the variable varName . (If necessary,
DropDown creates varName.)

PopUp itemList,var
 Displays a pop- up menu containing the character strings from

itemList , waits for you to select an item, and stores the number of
your selection in var .
The elements of itemList must be character strings: item1String,
item2String, item3String, ...
If var already exists and has a valid item number, that item is
displayed as the default choice.

Problem solving and Program design using the TI-92 113

 For example:

Request promptString,var
 Request creates an input/dialog box for the user to type in data. If

var contains a string, it is displayed and highlighted in the
input/dialog box as a default choice. promptString must be ≤ 20
characters.

 For example:

 Request "Your Name", str1¸ returns:

Text promptString Displays the character string promptString dialog box.
 For example:

 If used as part of a Dialog...EndDlog block, promptString is
displayed inside that dialog box.

 Text "Problem solving and .."¸ returns:

Title titleString,[Lbl] Creates the title of a pull- down menu or dialog box when used

inside a Toolbar or Custom construct, or a Dialog...EndDlog
block.

 Note: Lbl is only valid in the Toolbar construct. When present, it
allows the menu choice to branch to a specified label inside the
program.

Toolbar
 block of statements

114 Problem solving and Program design using the TI-92

EndTBar Creates a toolbar menu.
The statements can be either Title or Item.

 Items must have labels. A Title must also have a label if it does not
have an item.

Problem solving and Program design using the TI-92 115

9.5 Practical problems
Try the following exercises. Be sure to write a
complete function or program using top-down
program design, functions and subroutines where
needed.

Problem 1
Modify the address program to add a fourth
option, Small, which requires only the name with
city and ZIP code (no street address).

Problem 2
Write a program that will ask the user for a first
name, middle and a last name. Then use the
toolbar to let the user decide whether to print out
the first name followed by middle and last name
or last name followed by a comma followed by
the first name and the middle name.

Problem 3
Design a toolbar to allow the user to select among
7-digit, 10-digit, or international telephone
numbers. For a 7-digit number, just input the
number itself; for a 10-digit number, input the
area code and the local number; and for
international numbers, input the country code,
create another menu to select between the
possibility of a city code or no city code, and then
input the local number.

Problem 4
Write a short program to display a dialog box
with a message.

a) Create a dialog box entitled "Ask me" to
display the message "Display message"

b) Modify the program in part (a) to ask the
user for the message to be displayed.

Problem 5
Write a program that uses the dialog box to get
two numerical expressions and then prints out
their sum. Remember that the input will be
interpreted as strings, so you'll need to convert
the inputs into numerical expressions before you
add them.

116 Problem solving and Program design using the TI-92

Problem 6
Use a dialog box to get today's day and date from
the user. Use an input box to get the month and
date, and use drop-down menus to get the year
(assume the year is 1996 through 2000) and the
day of the week. Then print out the day and date
in a reasonable format.

Problem 7
Create a custom menu that rearranges the Other
menu on the Home screen. Put the first three
commands into a Create menu, the next three
commands into a Clear menu, and the next two
commands into a Function menu. Use your
custom menus to try each of the given commands.

Problem 8
Create a custom menu that allows you to run
different programs directly from the menus
instead of locating them through the Program
Editor. If you have the programs from this book
on your calculator, group them by chapter in such
a way that you can run any program from this
chapter by pressing Š and then selecting the
name of the program you want to run.

Problem 9
Convert the drop-down menus from Problem 6
into pop-up menus. Remember that you won't be
able to use them within a dialog box.

Problem solving and Program design using the TI-92 117

Appendix

Problem solving and Program design using the TI-92 119

TI-92 Functions, Instructions and Commands

0 Deletes the character to the left of the cursor.

¥ C Copies highlighted characters.

¥ V Pastes highlighted characters.

¥ X Cuts highlighted characters.

¦ [text] press 2 X A comment symbol ¦ lets you enter a remark

in a program.
When you run the program, all characters following ¦ are ignored;
comments and are not executed.

& press 2H string1 & string2 ⇒ string
 The & symbol stands for appends (concatenates) two strings into

one string.
 For example:

 "Ton" & "and" & "Martijn"¸ returns: "Ton and Martijn"

a ! b a § b Stores the value on the left (a) in the variable on the
right (b):

 2 exponent 2

 To type exponent 2 Press 2¿2:MathúI:2

≥ "greater than or equal to" symbol
 To type ≥ press 2ÃÁ or ¥¶ or press 2I, select 8:Test,

and select 3: ≥.

≤ "smaller than or equal to" symbol
 To type ≤ press 2ÂÁ or ¥µ or press 2I, select 8:Test,

and select 4: ≤.

≠ "not equal" symbol
 To type ≠ press eÁ or 2Ø or press 2I, select 8:Test,

and select 6: ≠.

and Boolean expression1 and Boolean expression2 ⇒ Boolean

expression
 Returns true only if both expressions simplify to true. Returns false

if either or both expressions evaluate to false.
 Returns true or false or a simplified form of the original entry.
 For example: true and true¸ returns: true

false and true¸ returns: false

120 Problem solving and Program design using the TI-92

false and false¸ returns: false
x≥6 and x≥ 7 ¸ returns: x≥7

approx(expression) ⇒ value

Returns the evaluation of expression as a decimal value, when
possible, regardless of the current Exact/ Approx mode.

 For example:

 approx(‹)¸ returns: 3.141 ...
This is equivalent to entering expression and pressing ¥ ¸ on
the Home screen.

char(integer) ⇒ character
Returns a character string containing the character numbered
integer from the TI-92 character set. See Appendix B (page 139)
for a complete listing of TI-92 characters and their codes.

 For example:

 char(65) ¸ returns: "A"
char(38) ¸ returns: "&"
The valid range for integer is 0–255.

Circle x, y, r [,drawMode] Draws a circle with its center at window coordinates (x, y) and with

a radius of r.
x , y , and r must be real values.
If drawMode = 1, draws the circle (default).
If drawMode = 0, turns off the circle.
If drawMode = -1, inverts pixels along the circle.

ClrDraw Clears the Graph screen and resets the Smart Graph feature in such

a way that the next time the Graph screen is displayed, the graph
will be redrawn.
While viewing the Graph screen, you can clear all drawn items
(such as lines and points) by pressing †(ReGraph) or pressing ˆ
and selecting 1:ClrDraw.

ClrGraph Clears any functions or expressions that were graphed with the

Graph command or were created with the Table command. (See
Graph on page 127)
Any previously selected Y= functions will be graphed the next time
that the graph is displayed.

ClrHome Clears all items stored in the entry() and ans() Home screen

history area.
Does not clear the current entry line.
While viewing the Home screen, you can clear the history area by
pressing ƒ and selecting 8: Clear Home .

ClrIO Clears the Program I/O screen.

colDim(matrix) ⇒ expression

Returns the number of columns contained in matrix.

Problem solving and Program design using the TI-92 121

 For example:

135

 colDim([0,1,2;3,4,5]) ¸ returns: 3

Note: See also rowDim() on page .

colNorm(matrix) ⇒ expression

Returns the maximum of the sums of the absolute values of the
elements in the columns in matrix.

 For example: −
−

 
  
1 2 3
4 5 6

 [0,1,2;3,4,5]»mat ¸ returns:

colNorm(mat) ¸ returns: 9

Custom
 block of statements
EndCustm Sets up a toolbar that is activated when you press 2¾.

It is very similar to the ToolBar instruction (page 136) except that
Title and Item statements cannot have labels.

 Note: 2¾ acts as a toggle. The first instance invokes the

menu, and the second instance removes the menu. The menu is
removed also when you change applications.

Define funcName(arg1, arg2,…) = expression

Creates funcName as a user- defined function. You then can use
funcName () , just as you use built- in functions. The function
evaluates expression using the supplied arguments arg1, arg2,
….and returns the result.
funcName cannot be the name of a system variable or built- in
function.
Note : This command also can be used to define simple variables;
for example, Define a = 3.

Define funcName(arg1, arg2,.) = Func
 block of statements
EndFunc Is identical to the previous form of Define except that in this form,

the user- defined function funcName() can execute a block of
multiple statements.
block also can include expressions and instructions (such as
If…Then…Else, and For). This allows the function funcName()
to use the Return instruction to return a specific result.
Note

: It is usually easier to author and edit this form of Function in
the program editor rather than on the entry line.

 For example: Define absvalue(arg)= Func
¨ Calculates the absolute value of arg
¨ Check if arg ≥ 0
 If x≥0 Then
 Return arg
 Else

122 Problem solving and Program design using the TI-92

 Return -arg
 EndIf
EndFunc

 absvalue(-7)¸ returns: 7

Define progName(arg1, arg2,.) = Prgm
 block of statements
EndPrgm Creates progName as a program or subprogram, but cannot return a

result Return . Can execute a block of multiple statements.
block also can include expressions and instructions (such as
If…Then…Else, and For) without restrictions.

DelFold folderNm1 [,folderNm2][,folderNm3]
 Deletes user- defined folders with the names folderNm1,

folderNm2, etc. An error message is displayed if the folders contain
any variables.

 Note: You cannot delete the main folder.

DelVar var1 [,var2][,var3] Deletes the specified variables from memory.

det(squareMatrix) ⇒ expression

Returns the determinant of squareMatrix.
squareMatrix must be square.

 For example:

 det([a,b;c,d]) ¸¸ a • d − b • c
det([1,2;3,4]) ¸ returns: −2

diag(list) ⇒ matrix
 Returns a matrix with the values in the argument list or matrix in its

main diagonal.

 For example:
 
 
 
 

2 0 0
0 4 0
0 0 6

 diag(2,4,6) ¸ returns:

Dialog
 block of statements
Endlog Generates a dialog box when the program is executed.

Valid block options in the … I/O , 1: Dialog menu item in the
Program Editor are 1: Text , 2: Request, 4: DropDown , and 7: Title
.

 The variables in a dialog box can be given values that will be

displayed as the default (or initial) value. If ¸ is pressed, the
variables are updated from the dialog box and variable ok is set to
1. If N is pressed, its variables are not updated, and system
variable ok is set to zero.

dim(list) ⇒ integer
 Returns the dimension of list.

Problem solving and Program design using the TI-92 123

 For example:

 dim(0,1,2) ¸ returns: 3

dim(matrix) ⇒ list
 Returns the dimensions of matrix as a two-element list

{rows, columns}.
 For example:

 dim([1,-1,2;-2,3,5]) ¸ returns: {2,3}

dim(string) ⇒ integer
 Returns the number of characters contained in character string

string.
 For example:

 dim("Hello") ¸ returns: 5
dim(" Hello"&" there") ¸ returns: 11

Disp Displays the current contents of the Program I/O screen.

Disp [exprOrString1][,exprOrString2]
 Displays each expression or character string on a separate line of

the Program I/O screen.
 For example:

 Disp "Hi again" ¸ returns: Hi again
Disp sin(‹/6) ¸ returns: 1/2

 If Pretty Print = ON , expressions are displayed in pretty print.

DispG Displays the current contents of the Graph screen.

DispTbl Displays the current contents of the Table screen.

DrawFunc expression Draws expression as a function of x, using x as the independent

variable.
Note: Regraphing erases all drawn items.

DropDown titleString,{item1String, item2String,….}
 Displays a drop- down menu with the name titleString and

containing the items 1: item1String , 2: item2String , and so forth.
 DropDown must be within a Dialog... EndDlog block.

If varName already exists and has a value within the range of
items, the referenced item is displayed as the default selection.
Otherwise, the menu’s first item is the default selection.

When you select an item from the menu, the corresponding number
of the item is stored in the variable varName . (If necessary,
DropDown creates varName.)

Else See If ,page 127.

ElseIf If Boolean expression1 Then

 block of statements1

124 Problem solving and Program design using the TI-92

ElseIf Boolean expression2 Then
 block of statements2

 ..
 ..
ElseIf Boolean expressionN Then
 block of statementsN
EndIf

 ElseIf can be used as a program instruction for program branching.
 See also If, page 127.

EndCustm See Custom, page 139.

EndDlog See Dialog, page 122.

EndFor See For, page 125.

EndFunc See Func, page 126.

EndIf See If, page 127.

EndLoop See Loop, page 130.

EndPrgm See Prgm, page 133.

EndTBar See ToolBar, page 136.

EndWhile See While, page 137.

Exit Exits the current For, While , or Loop block.

Exit is not allowed outside the three looping structures (For,
While, or Loop).

expr(string) ⇒ expression
 Returns the character string contained in string as an expression

and immediately executes it.
 For example:

 expr("3+4+x^5+2x+x")¸ returns: x5+3x+7

Fill expression, matrixVar ⇒ matrix
 Replaces each element in variable matrixVar with expression.

matrixVar must already exist.

 For example: −
−

 
  
1 2 3
4 5 6

 [0,1,2;3,4,5] »mat1 ¸ returns:

Fill 7, mat1¸ returns:  
  
7 7 7
7 7 7

Fill expression, listVar ⇒ list
 Replaces each element in variable listVar with expression.

listVar must already exist.

Problem solving and Program design using the TI-92 125

 For example:

 {0,1,2,3,4,5}»list1 ¸ returns: [0 1 2 3 4 5]
Fill 7, list1¸ returns: [7 7 7 7 7]

FnOff Deselects all Y= functions for the current graphing mode.

In split-screen, two-graph mode, FnOff only applies to the active
graph.

FnOff [1] [, 2] .. [, 99]
 For example:

 FnOff 1,3 ¸ deselects y1(x) and y3(x), in function graphing mode.

FnOn Selects all Y= functions that are defined for the current graphing
mode.
In split- screen, two- graph mode, FnOn only applies to the active
graph.

FnOn [1] [, 2] ... [, 99] Selects the specified Y= functions for the current graphing mode.

Note: In 3D graphing mode, only one function at a time can be
selected.

For counter, begin_val, end_val [,step_size]
 block of statements
EndFor Executes the statements in block of statements iteratively for each

value of counter from begin_val upto (or downto) end_val, in
increments (or decrements) of step_size.
counter must not be a system variable.
step_size can be positive or negative, the default value is 1.

format(expr1[,formatString]) ⇒ string
 Returns expression as a character string based on the format

template.
expr1 must simplify to a number.
formatString is a string and must be in the form:
F[n], S[n],E[n],G[n][c],
where [] indicate optional portions.

 F[n] : Fixed format. n is the number of digits to display after
the decimal point

 S[n] : Scientific format. n is the number of digits to display
after the decimal point.

 E[n] : Engineering format. n is the number of digits after the
first significant digit. The exponent is adjusted to a multiple of
three, and the decimal point is moved to the right by zero, one, or
two digits.

 G[n][c] : Same as fixed format but also separates digits to the left
of the radix into groups of three. c specifies the group separator
character and defaults to a comma. If c is a period, the radix will be
shown as a comma.

126 Problem solving and Program design using the TI-92

 [Rc] : Any of the above specifiers may be suffixed with the
Rc radix flag, where c is a single character that specifies what to
substitute for the radix point.

 For example:

 format(1.234567,"f3")¸.returns: "1.235"
format(1.234567,"s2")¸ returns: "1.23–0"
format(1.234567,"e3")¸ returns: "1.235–0"
format(1.234567,"g3")¸ returns: "1.235"
format(1234.567,"g3")¸ returns: "1,234.567"
format(1.234567,"g3,r:")¸ returns: "1:235"

Func
 block of statements
EndFunc Format required to define a multi(line)statement function.

Get var Retrieves a CBL (Calculator- Based Laboratory) value from the

link port and stores it in variable var.

getFold() ⇒ nameString
 Returns the name of the current folder as a string.
 For example:

 getFold() ¸ returns: "main"

getKey() ⇒ integer
 Returns the key code of the key pressed.

For a listing of key codes, see Appendix B (page 139)

getMode(modeNameString) ⇒ String
 If the argument is a specific mode name, returns a string containing

the current setting for that mode.
 For example:
 If the argument is "ALL" , returns a list string pairs containing the

settings of all the modes.

 getMode("angle") ¸ returns: "RADIAN"

getMode("ALL") ⇒ String
 For example:

 Note 1: Your screen may display different mode settings.
Note 2: If you want to restore the mode settings later, you must
store the getMode("ALL") result in a variable, and then use setMode
(see page

 getMode("ALL") ¸ returns:
{"Graph" "FUNCTION" "Display Digits""FLOAT 6" "Angle"
"RADIAN" "Exponential Format" "NORMAL" "Complex Format"
"REAL" "Vector Format" "RECTANGULAR" "Pretty Print" "ON"
"Split Screen" "FULL" "Split 1 App" "Home" "Split 2 App"
"Graph" "Number of Graphs" "1" "Graph 2" "FUNCTION" "Split
Screen Ratio" "1: 1" "Exact/ Approx" "AUTO"}

135) to restore the modes.

getType(var) ⇒ String
 Returns a string indicating the TI-92 data type of variable var .

Problem solving and Program design using the TI-92 127

 For example:

 {1,2,3} ! temp ¸ returns: {1 2 3}
getType(temp) ¸ returns: "LIST"
Data Type

 "DATA" Data type
Variable Contents

 "EXPR" Expression (includes complex/ arbitrary/ undefined, ∞,
-∞, TRUE, FALSE, pi, e)

 "FIG" Geometry figure
 "FUNC" Function
 "GDB" Graph Data Base
 "LIST" List
 "MAC" Geometry macro
 "MAT" Matrix
 "NONE" Variable does not exist
 "NUM" Real number
 "PIC" Picture
 "PRGM" Program
 "STR" String
 "TEXT" Text type
 "VAR" Name of another variable

Goto labelName Transfers program control to the label labelName.
 labelName must be defined in the same program using a Lbl

instruction. (See page 129)

Graph expression[,var] Graphs the requested expression / function using the current

graphing mode.
If you omit an optional var argument, Graph uses the independent
variable of the current graphing mode.

 For example:
 Note: Use ClrGraph (page

 Graph sin(t),t¸
120) to clear these functions, or go

to the Y= Editor to re-enable the system Y= functions.

identity(expression) ⇒ matrix

 For example:
 
 
 
  

1 0 0

0 1 0

0 0 1

 identity(3)¸ returns: : : the identity matrix with a

dimension 3
 expression must evaluate to a positive integer.

If expression If expression is true, only the statement following is executed;

otherwise, the statement is skipped.
If expression Then
 block of statements
EndIf If expression is true, the statements in block of statements are

executed; otherwise, these statements are not executed.

If expression Then
 block of statements1
Else

128 Problem solving and Program design using the TI-92

 block of statements2
EndIf If expression is true, the statements in block of statements1 are

executed; otherwise, the statements in block of statements2 are
executed.

If expression1 Then
 block of statements1
ElseIf expression2 Then
 block of statements2
.
.
.
ElseIf expressionN Then
 block of statementsN
EndIf If expression1 is true, the statements in block of statements1 are

executed; otherwise, if expression2 is true, the statements in block
of statements2 are executed; and so on.

Input [promptString,] var pauses the program, displays promptString on the Program I/O

screen, waits for you to enter an expression, and stores the
expression in variable var.
If you omit promptString , "?" is displayed as a prompt.

InputStr [promptString,] var pauses the program, displays promptString on the Program I/O

screen, waits for you to enter an expression, and stores the
expression in variable var.
If you omit promptString , "?" is displayed as a prompt.

 Note: The difference between Input and InputStr is that InputStr

always stores the result as a string

 in such a way that " " are not
required.

inString(srcString,subString) ⇒ integer
Returns the character position in string srcString at which the first
occurrence of string subString begins.

 For example:

 inString("Ton is there","the")¸ returns: 8

int(expression) ⇒ integer
Returns the greatest integer that is less than or equal to the
expression.

 For example:

 int(-2.7)¸ returns: -3

int(list1) ⇒ list
int(matrix1) ⇒ matrix
 For a list or matrix, returns the greatest integer of each of the

elements.

intDiv(number1,number2) ⇒ integer

Returns the signed integer part of number1 divided by number2.
 For example: intDiv(-9,2)¸ returns: -4

Problem solving and Program design using the TI-92 129

intDiv(list1, list2) ⇒ list
intDiv(matrix1,matrix2) ⇒ matrix
 For lists and matrices returns the signed integer part of argument 1

divided by argument 2 for each element pair.

iPart(number) ⇒ integer

Returns the integer part of number.
 For example:

 iPart(-7,654)¸ returns: -7

iPart(list1) ⇒ list
iPart(matrix1) ⇒ matrix
 For lists and matrices, returns the integer part of each element.
Item itemNameString See Custom example on page 121.
Item itemNameString,label
 Valid only within a Custom...EndCustm or ToolBar...EndTBar

block. Sets up a dropdown menu element to let you paste text to the
cursor position (Custom) or branch to a label (ToolBar).

 Note: Branching to a label is not allowed within a Custom block
(page 121).

Lbl labelName Defines a label with the name labelName in the program.

You can use a Goto labelName instruction to transfer program
control to the instruction immediately following the label.

 labelName must meet the same naming requirements as a variable
name.

left(srcString[,num]) ⇒ string
 Returns the leftmost num characters contained in character string

srcString .
 For example:
 If you omit num , returns all of srcString.

 left("Martijn",2) ¸ returns:"Ma"

left(list1[,num]) ⇒ list
 Returns the leftmost num elements contained in list1.
 For example:
 If you omit num, returns all of list1.

 left({1,2,-3,4},3) ¸ returns: {1 2 –3}

left(comparison) ⇒ expression
 Returns the left- hand side of an equation or inequality.
 For example:

 left(x<7) ¸ returns: x

Line xStart,yStart,xEnd,yEnd[,drawMode]
 Displays the Graph screen and draws, erases, or inverts a line

segment between the window coordinates (xStart,yStart) and
(xEnd,yEnd), including both endpoints.

 If drawMode = 1, draws the line (default)
If drawMode = 0, turns off the line
If drawMode = -1, turns a line that is on to off or off to on.

 Note: Regraphing erases all drawn items.

130 Problem solving and Program design using the TI-92

Local var1[,var2][,var3]
 Declares the specified vars as local variables. Those variables exist

only during evaluation of a program or function and are deleted
when the program or function finishes execution.

 Note: Local variables save memory because they only exist
temporarily. Also, they do not disturb any existing global variable
values. Local variables must be used for For loops and for
temporarily saving values in a multiline function since
modifications on global variables are not allowed in a function.

Loop
 block of statements
EndLoop Repeatedly executes the statements in block of statements.
 Note that the loop will be executed endlessly, unless a Goto or Exit

instruction is executed within block of statements.

max(expression1,expression2) ⇒ expression
 Returns the maximum of expression1 and expression2.
 For example:

 max(1.2,3.4) ¸ returns: 3.4

max(list1,list2) ⇒ list
max(matrix1,matrix2) ⇒ matrix
 If the arguments are two lists or matrices, returns a list or matrix

containing the maximum value of each pair of corresponding
elements.

mid(srcString,start[,count]) ⇒ string
 Returns count characters from character string srcString ,

beginning with character number start.
 For example:
 If count is omitted or is greater than the dimension of srcString,

returns all characters from srcString , beginning with character
number start.

 mid("Hello there",1,5)¸ returns: "Hello"

 For example:
 count must be ≥ 0. If count = 0, returns an empty string.

 mid("Hello there",2)¸ returns: "ello there"

mid(srcList,start[,count]) ⇒ list
 Returns count elements from srcList, beginning with element

number start.
 For example:
 If count is omitted or is greater than the dimension of srcList,

returns all elements from srcList , beginning with element number
start.

 mid({9,8,7,6},2,2)¸ returns: {8 7}

 For example:
 count must be ≥ 0. If count = 0, returns an empty string.

 mid({9,8,7,6},3)¸ returns: {7 6}

min(expression1,expression2) ⇒ expression
 Returns the minimum of the two arguments.

Problem solving and Program design using the TI-92 131

 For example:

 min(9.8,7.6)¸ returns: 7.6

min(list1,list2) ⇒ list
 Returns the minimum of the two arguments. If the arguments are

two lists, returns a list containing the minimum value of each pair
of corresponding elements.

 For example:

 min({9,6},{7,8})¸ returns: {7.6}

min(list) ⇒ expression
 Returns the minimum element of list.
 For example:
 Note: See also max() (page

 min({9,6,7,8})¸ returns: 6
130)

mod(expression1,expression2) ⇒ expression
 Returns the first argument modulo the second argument as defined

by the identities:
 mod(x,0) ≡ x
 mod(x,y) ≡ x - y•int(x/y)

 For example:

 Note: See also remain() on page

 mod(14,3)¸ returns: 2
mod(14,3) ≡ 14 - 3•int(14/3) = 14 - 3•4 = 2

133.

mod(list1,list2) ⇒ list
mod(matrix1,matrix2) ⇒ matrix
 If the arguments are two lists or two matrices, returns a list or

matrix containing the modulo of each pair of corresponding
elements.

NewData dataVar,list1[,list2][,list3]...
 Creates data variable dataVar, where the columns are the lists in

order.
 Must have at least one list.
 For example:

 NewData makes the
new variable current in
the Data/ Matrix
Editor.

 NewData mydata,{1,2,3},{4,5,6}¸ returns: Done
(Go to the Data/ Matrix
Editor and open the var
mydata (or the current)
to display the data
variable on the right.)

NewFold folderName Creates a user-defined folder with the name folderName, and then

sets the current folder to that folder. After you execute this
instruction, you are in the new folder.

newList(numElements) ⇒ list
 Returns a list with a dimension of numElements . Each element is

zero.

132 Problem solving and Program design using the TI-92

 For example:

 newList(7)¸ returns: {0 0 0 0 0 0 0 0}

newMat(numRows,numCols) ⇒ matrix
 Returns a matrix of zeros with the dimension numRows by

numCols.

 For example:  
  
0 0 0 0 0 0 0
0 0 0 0 0 0 0

 newMat(7,2)¸ returns:

not(Boolean expression1) ⇒ Boolean expression
 Returns true, false, or a simplified Boolean expression1 .
 For example:

 not(2>=3)¸ returns: true
not(x<7)¸ returns: x≥7
not(not(trueborn))¸ returns: trueborn

or Boolean expression1 or Boolean expression2 ⇒ Boolean

expression
 Returns true if either or both expressions simplify to true. Returns

false only if both expressions evaluate to false.
 Returns true or false or a simplified form of the original entry.
 For example:

 true or true¸ returns: true
false or true¸ returns: true
false or false¸ returns: false
x≥7 or x≥ 8 ¸ returns: x≥7

ord(string) ⇒ integer
 Returns the numeric code of the first character in character string

string.
 For example:

 See Appendix B, page

 ord("Ton")¸ returns: 84
ord("T")¸ returns: 84
Note: ord("t")¸ returns: 116
 char(116)¸ returns: "t"
 ord(char(116))¸ returns: 116

139, for a complete listing of TI-92
characters and their codes.

Output row,column,ExprOrString
 Displays ExprOrString (an expression or character string) on the

Program I/O screen at the text coordinates (row,column).

Pause [expression]
 Suspends program execution.

If you include expression , displays expression on the Program I/O
screen.

PopUp itemList,var
 Displays a pop- up menu containing the character strings from

itemList , waits for you to select an item, and stores the number of

Problem solving and Program design using the TI-92 133

your selection in var .
The elements of itemList must be character strings: item1String,
item2String, item3String, ...
If var already exists and has a valid item number, that item is
displayed as the default choice.

 For example:

Prgm
 .
 .
 .
EndPrgm Required instruction that identifies the beginning of a program.Last

line of program must be EndPrgm.

Prompt var1[,var2][,var3]... Displays a prompt on the Program I/O screen for each variable in

the argument list, using the prompt var1?. Stores the entered
expression in the corresponding variable.

 Prompt must have at least one argument.

rand([n]) ⇒ expression
 With no parameter n, returns the next random number between 0

and 1 in the sequence.
 For example:

 rand()¸ returns: 0.158
When an argument is positive, returns a random integer in the
interval [1,n].

For example:

 rand(7)¸ returns: 5
When an argument is negative, returns a random integer in the
interval [-n ,-1].

For example:

randMat(numRows,numCols) ⇒ matrix

 rand(-7)¸ returns: -3

 Returns a matrix of integers between -9 and 9 of the specified
dimension.

 Both arguments must simplify to integers.

remain(expression1,expression2) ⇒ expression
 Returns the remainder of the first argument with respect to the

second argument as defined by the identities:
 remain(x,0) ≡ x
 remain(x,y) ≡ x - y•intDiv(x,y)

 For example:

 Note: See also mod() on page

 remain(14,3)¸ returns: 2
remain(14,3) ≡ 14 - 3•intDiv(14,3) = 14 - 3•4 = 2

131.

134 Problem solving and Program design using the TI-92

Request promptString,var
 Request creates an input/dialog box for the user to type in data. If

var contains a string, it is displayed and highlighted in the
input/dialog box as a default choice. promptString must be ≤ 20
characters.

 For example:

 Request "Your Name", str1¸ returns:

Return[exp] Returns the expression exp as a result of the function. Use within a

Func…EndFunc block.
 For example:

 Define abs(x)=Func
: If x≥0 Then
: Return x
: Else
: Return ªx
: EndIf
:EndFunc ¸

abs(-7) ¸"returns": 7

right(list1,num) ⇒ list

Returns the rightmost num elements contained in list1
 For example:

 right({1,2,3,4,5,6,7},3)¸ returns: {5 6 7}

right(srcString,num) ⇒ string
Returns the rightmost num characters contained in character string
srcString.

 For example:

 right("Hello Ton",2)¸ returns: "on"

right(comparison) ⇒ expression
Returns the right side of an equation or inequality

 For example:

 right(x<3)¸ returns: 3

round(expression1[,digits]) ⇒ expression
Returns the argument rounded to the specified number of digits
after the decimal point.
digits must be an integer in the range 0– 12. If digits is not
included, returns the argument rounded to 12 significant digits.

 Note: Display digits mode may still affect how this is displayed.
 For example:

 round(0.123456789,7) ¸ returns: 0.1234568

Problem solving and Program design using the TI-92 135

round(list1[,digits])
round(matrix1[,digits])
 Returns a list / matrix of the elements rounded to the specified

number of digits.

rowDim(matrix) ⇒ expression
 Returns the number of rows in matrix.
 Note: See also colDim() on page 120.

rowNorm(matrix) ⇒ expression
 Returns the maximum of the sums of the absolute values of the

elements in the rows in matrix.
 Note: All matrix elements must simplify to numbers.

See also colNorm() on page 121.

setFold(newfolderName) ⇒ oldfolderString
 Returns the name of the current folder as a (oldfolder)string and

sets newfolderName as the current folder.
 Note: The folder newfolderName must exist.

setMode(modeString,setString) ⇒ string
 Sets mode modeString to the new setting setString , and returns the

(old) current setting of that mode.
 For example:

 setMode("Angle","Degree")¸ returns: "RADIAN"
sin(30) ¸ returns: 1/2
setMode("Angle","Radian")¸ returns: "DEGREE"
sin(π/6) ¸ returns: ½

 setString is a character string that specifies the new setting for the
mode. It must be one of the settings listed below for the specific
mode you are setting.

setMode(list) ⇒ stringList
 list contains pairs of keyword strings and will set them all at once.

This is recommended for multiple mode changes.
 Note: Use setMode(var) to restore settings saved with

getMode("ALL") ! var . See getMode on page 126.

 Mode Name
 "Graph" "Function", "Parametric", "Polar", "Sequence", "3D"

Settings

 "Display Digits" "Fix 0","Fix 1",...,"Fix 12", "Float","Float
1",...,"Float 12"

 "Angle" "Radian", "Degree"
 "Exponential Format" "Normal", "Scientific", "Engineering"
 "Complex Format" "Real", "Rectangular", "Polar"
 "Vector Format" "Rectangular", "Cylindrical", "Spherical"
 "Pretty Print" "Off", "On"
 "Split Screen" "Full", "Top- Bottom", "Left- Right"

136 Problem solving and Program design using the TI-92

 "Split 1 App" "Home", "Y= Editor", "Window Editor",
"Graph", "Table",
"Data/ Matrix Editor", "Program Editor", "Geometry",
"Text Editor"

 "Split 2 App" "Home", "Y= Editor", "Window Editor",
"Graph", "Table",
 "Data/ Matrix Editor", "Program Editor", "Geometry",
"Text Editor"

 "Number of Graphs" "1", "2"
 "Graph2" "Function", "Parametric", "Polar", "Sequence", "3D"
 "Split Screen Ratio" "1:1", "1:2", "2:1"
 "Exact/ Approx" "Auto", "Exact", "Approximate"

Stop Used as a program instruction to stop program execution.

string(expression) ⇒ string

Simplifies expression and returns the result as a character string.
 For example:

 string(7+45)¸ returns "52". The string "52" represents the
characters "5" and "2", not the number 52.

 string(0.1234567)¸ returns: "0.1234567"
string(1+2)¸ returns: "3"
string(sin(π/6) +7)¸ returns: "15/2"

Text promptString Displays the character string promptString dialog box.
 For example:

 If used as part of a Dialog...EndDlog block, promptString is
displayed inside that dialog box.

 Text "Problem solving and .."¸ returns:

Title titleString,[Lbl] Creates the title of a pull- down menu or dialog box when used

inside a Toolbar or Custom construct, or a Dialog...EndDlog
block.

 Note: Lbl is only valid in the Toolbar construct. When present, it
allows the menu choice to branch to a specified label inside the
program.

Toolbar
 block of statements
EndTBar Creates a toolbar menu.

The statements can be either Title or Item.
 Items must have labels. A Title must also have a label if it does not

have an item.

Problem solving and Program design using the TI-92 137

Try
 block of statements1
Else
 block of statements2
EndTry Executes block of statements1 unless an error occurs.

Program execution transfers to block of statements2 if an error
occurs in block of statements1. Variable errornum contains the
error number to allow the program to perform error recovery.

While condition
 block of statements
EndWhile Executes the statements in block of statements as long as condition

is true.
You must allow for the value condition to be changed whitin the
block of statements.

zeros(expression ,var)) ⇒ string

Returns a list of candidate real values of var that make
expression = 0.

 For example:
2 2((4)) ((4))

2 2
a c b b a c b b

a a

 − − ⋅ ⋅ − + − ⋅ ⋅ − − 
 ⋅ ⋅  

 zeros(a*x^2+b*x+c,x)¸ returns:

 For some purposes, the result form for zeros() is more convenient
than that of solve() .However, the result form of zeros() cannot
express implicit solutions, solutions that require inequalities, or
solutions that do not involve var.

ZoomStd Sets the window variables to the standard values, and then updates

the ZoomStd viewing window.
 Standard values for function graphing:

x:[-10,10,1], y:[-10,10,1] and xres=2

138 Problem solving and Program design using the TI-92

Problem solving and Program design using the TI-92 139

TI-92 Character Codes

The char() function lets you refer to any TI-92 character by its numeric character code.
For example, to display 2 on the Program I/O screen, use Disp char(127). You can use the ord()
function to find the numeric code of a character. For example

, ord("A") returns the value 65.

1 SOH 41) 81 Q 121 y 161 ¡ 201 É 241 ñ
2 STX 42 * 82 R 122 z 162 ¢ 202 Ê 242 ò
3 ETX 43 + 83 S 123 { 163 £ 203 Ë 243 ó
4 EOT 44 , 84 T 124| | 164 ¤ 204 Ì 244 ô
5 ENQ 45 ì 85 U 125 } 165 ¥ 205 Í 245 õ
6 ACK 46 . 86 V 126 ~ 166 ¦ 206 Î 246 ö
7 BELL 47 / 87 W 127  167 § 207 Ï 247 ÷
8 BS 48 0 88 X 128 α 168 § 208 Ð 248 ø
9 TAB 49 1 89 Y 129 β 169 ¦ 209 Ñ 249 ù
10 LF 50 2 90 Z 130 Γ 170 ª 210 Ò 250 ú
11 ÷ 51 3 91 [131 γ 171 « 211 Ó 251 û
12 FF 52 4 92 \ 132 ∆ 172 ¬ 212 Ô 252 ü
13 CR 53 5 93] 133 δ 173 213 Õ 253 ý
14 Œ 54 6 94 ^ 134 ε 174 ® 214 Ö 254 þ
15  55 7 95 _ 135 ζ 175 - 215 × 255 ÿ
16 é 56 8 96 ` 136 θ 176 ° 216 Ø
17  57 9 97 a 137 λ 177 + 217 Ù
18  58 : 98 b 138 ξ 178 ñ 218 Ú
19  59 ; 99 c 139 Π 179 ò 219 Û
20  60 < 100 d 140 π 180 ê 220 Ü
21 ← 61 = 101 e 141 ρ 181 µ 221 Ý
22 → 62 > 102 f 142 Σ 182 ¶ 222 Þ
23 ↑ 63 ? 103 g 143 σ 183 ø 223 ß
24 ↓ 64 @ 104 h 144 τ 184 × 224 à
25  65 A 105 i 145 φ 185 ´ 225 á
26  66 B 106 j 146 ψ 186 µ 226 â
27  67 C 107 k 147 Ω 187 » 227 ã
28 ∪ 68 D 108 l 148 ω 188 d 228 ä
29 ∩ 69 E 109 m 149 E 189 · 229 å
30 ⊂ 70 F 110 n 150 e 190 ¸ 230 æ
31 ∈ 71 G 111 o 151 û 191 ¿ 231. ç
32 SPACE 72 H 112 p 152 ˜ 192 À 232 è
33 ! 73 I 113 q 153 î 193 Á 233 é
34 " 74 J 114 r 154 ü 194 Â 234 ê
35 # 75 K 115 s 155 ý 195 Ã 235 ë
36 $ 76 L 116 t 156 œ 196 Ä 236 ì
37 % 77 M 117 u 157 � 197 Å 237 í
38 & 78 N 118 v 158 ≥ 198 Æ 238 î
39 ' 79 O 119 w 159 Ÿ 199 Ç 239 ï
40 (80 P 120 x 160 .. 200 È 240 ð

	1. Introduction
	1.1 Starting a Simple Program

	2. Program Style
	2.1 Clear Screens and Reset Memory
	2.2 Creating a new folder
	2.3 Comments
	2.4 Indentation
	2.5 Creating a new program
	2.6 Debugging a Program
	2.7 Entering a Graphing Program
	2.8 Listing the programs you have created
	2.9 Summary of commands
	2.10 Practical problems

	3. Program structure
	3.1 Drawing a specific object
	3.2 Making a program more flexible
	3.3 Courteous programming: getMode & setMode
	3.4 Summary of commands
	3.5 Practical problems

	4. Top-down Design & Program Design
	4.1 Software Development Method
	4.2 Top-Down Design
	4.2.1 Drawing a House: An example

	4.3 Summary of commands
	4.4 Practical problems

	5. Selection Control Structures
	5.1 The If…Then…EndIf statement
	5.1.1 Order a pair of data values: An example
	5.1.2 Is the number an integer? : An example

	5.2 The If…Then…Else…EndIf statement
	5.2.1 The absolute value of a number: An example
	5.2.2 Rental Car Pricing: An example

	5.3 The If…Then…ElseIf…EndIf statement
	5.4 Top-Down Program Design
	5.4.1 The ABC Formula: An example
	5.4.2 Assigning Exam Scores to Letter Grades: An example

	5.5 Summary of Commands
	5.6 Practical problems

	6. Repetition Control Structures
	6.1 The For…EndFor structure
	6.2 The Loop...EndLoop structure
	6.3 The While...EndWhile structure
	6.4 Using Loops to Accumulate a Sum and Average
	6.4.1 Using a For…EndFor Loop
	6.4.2 Using a Loop ... EndLoop Loop
	6.4.3 Using a While ... EndWhile Loop

	6.5 Nested Loops
	6.5.1 Create and Fill a Matrix: An example
	6.5.2 Print Out Zeros of an Expression: An example

	6.6 Summary of Commands
	6.7 Practical problems

	7. Functions, Subroutines, Programs and Parameters
	7.1 Functions
	7.1.1 Create an Absolute Value Function: An Example
	7.1.2 Create an Factorial Function: An Example

	7.2 Introduction to parameter lists
	7.3 Summary of Commands
	7.4 Practical problems

	8. Data Types
	8.1 Real Numbers
	8.2 Expressions
	8.3 String Variables
	8.3.1 Create a Count Letters Program: An Example

	8.4 List Variables
	8.4.1 Findkey, a List Variables Program: An Example

	8.5 Data Variables
	8.6 Matrix Variables
	8.6.1 Matrix multiplication: An Example

	8.7 Data Types and Databases
	8.7.1 Access information in a NAC database: An Example

	8.8 Summary of Commands
	8.9 Practical problems

	9. Menus and dialog boxes
	9.1 Designing Multiple Menus
	9.2 Creating Dialog Boxes
	9.3 Creating Custom and Pop-Up Menus
	9.4 Summary of Commands
	9.5 Practical problems

